পাস্কেলৰ ত্ৰিভূজ

পাস্কেলৰ ত্ৰিভূজ হ’ল এটা গাণিতিক ত্ৰিভূজ যিটোৰ সহায়ত কিছুমান গণিতীয় সমাধান কৰিব পাৰি | ত্ৰিভূজটো তলত দিয়া ধৰণে গঠন কৰিব পাৰি |

ধৰা হওক আমি একেবাৰে ওপৰৰ দুটা শাৰীৰ পৰা আৰম্ভ কৰিলো | তেন্তে পৰৱৰ্তী শাৰীটোৰ প্ৰতিটো ঘৰ গঠন কৰিবলৈ আমি তাৰ ওপৰৰ দুটা ঘৰলৈ মন কৰিব লাগিব অৰ্থাত্‍ ঠিক ওপৰতে থকা ঘৰটো আৰু তাৰ সোঁফালে থকাটো, আকৌ ওপৰৰ ঘৰটো আৰু তাৰ বাওঁফালে থকাটো | প্ৰতিটো শাৰীৰ আৰম্ভণি আৰু শেষত কেৱল এটা সংখ্যা থাকিলে ১ বহুৱাব লাগিব | এই নিয়মটো প্ৰথমটো নিয়মৰে অন্তৰ্ভুক্ত বুলি ধৰিব পাৰি | উদাহৰণ স্বৰূপে, যিকোনো শাৰীৰ প্ৰথম ১ টো পাবলৈ আমি ওপৰৰ সংখ্যাটো আৰু তাৰ বাওঁফালে থকাটো যোগ কৰিব লাগিব | যিহেতু তাত কোনো সংখ্যা নাই, গতিকে ০ যোগ কৰিব লাগিব আৰু যোগফলটো ১ হ’ব | ঠিক সেইদেৰে সোঁফালৰ ঘৰটোৰ ক্ষেত্ৰতো যোগফল ১ হ’ব |

যেতিয়া কোনোৱে পাস্কেলৰ ত্ৰিভূজৰ যিকোনো এটা ঘৰৰ সংখ্যাটোৰ কথা কয়, তেতিয়া তেওঁ শাৰীৰ ক্ৰমিক সংখ্যা আৰু সেই শাৰীৰ নিৰ্দ্দিষ্ট স্থানৰ বিষয়ে ক’ব লাগিব | কিন্তু শাৰী আৰু স্থানৰ গন্তি ০ ৰ পৰা আৰম্ভ কৰিব লাগিব | এইদৰে হিচাব কৰি ওপৰৰ চিত্ৰলৈ চালে দেখা যাব যে ২০ সংখ্যাটো ৬ নম্বৰ শাৰীৰ ৩ নম্বৰ স্থানত আছে | এনেকৈয়ে পাস্কেলৰ ত্ৰিভূজটো অতি সহজে গঠন কৰিব পৰা যায় |

পাস্কেলৰ ত্ৰিভূজৰ ব্যৱহাৰ

পাস্কেলৰ ত্ৰিভূজটো কেৱল এটা বহুত সংখ্যা থকা ত্ৰিভূজ নহয় | প্ৰধানকৈ দুটা ক্ষেত্ৰত ই ব্যৱহাৰ হয় - বীজগণিত আৰু সম্ভাব্যতাৰ অধ্যয়নত |

বীজগণিতত পাস্কেলৰ ত্ৰিভূজৰ ব্যৱহাৰ

ধৰাহ’ল আমি ৰাশিটো তাৰ কোনো এক ঘাটত প্ৰকাশ কৰিব বিচাৰিছোঁ, যেনে: ঘাট ১,২,৩,৪ ... ইত্যাদি | যদি আমি প্ৰকৃততে এইধৰণে বীজগণিতীয় পদ্ধতিৰে গণনা কৰি প্ৰকাশ কৰোঁ ফলবোৰ তলত দিয়াৰ দৰে হ’ব -

(x+1)^0 =~~~~~~~~~~~~~~~1

(x+1)^1 = ~~~~~~~~~~~~1~~~+~~~x

(x+1)^2 =~~~~~~~~~1~~~+~~~2x~~~+~~~x^2

(x+1)^3 =~~~~~~~1~~~+~~~3x~~~+~~~3x^2~~~+~~~x^3

(x+1)^4 =~~~~1~~~+~~~4x~~~+~~~6x^2~~~+~~~4x^3~~~+~~~x^4

(x+1)^5 =~1~~~+~~~5x~~~+~~~10x^2~~~+~~~10x^3~~~+~~~5x^4~~~+~~~x^5

.....

এতিয়া আমি যদি প্ৰতিটো ৰাশিৰ সহগ বিলাকলৈ মন কৰোঁ আমি দেখিম আমি এই সংখ্যাবোৰ পাস্কেলৰ ত্ৰিভূজত পোৱা সংখ্যাবোৰৰ দৰে একে | এই সাদৃশ্যৰ বাবেই পাস্কেলৰ ত্ৰিভূজৰ ঘৰবিলাকত থকা সংখ্যাবোৰক দ্বিপদ সহগ (binomial coefficient) বোলা হয় |

এই বোৰক এটা সৰল সূত্ৰৰ সহায়ত নিৰূপণ কৰিব পাৰি -

[n~~:~~k] = frac{n!}{k!*~(n-k)!}

উদাহৰণস্বৰূপে,

[6~~:~~3] = frac{6*5*4*3*2*1}{3*2*1*3*2*1} = 20.

সম্ভাব্যতাৰ ক্ষেত্ৰত পাস্কেলৰ ত্ৰিভূজৰ ব্যৱহাৰ:

সম্ভাব্যতাৰ ক্ষেত্ৰত পাস্কেলৰ ত্ৰিভূজৰ ব্যৱহাৰ কৰি জোঁট বা নিৰ্ণয় কৰিব পাৰি | ধৰাহওক, এটা পাছিত পাঁচটা টুপী আছে আৰু আমি জানিব খুজিছো তাৰে দুটা টুপী একেবাৰতে লৈ মুঠ কিমান ধৰণে টুপী কেইটা বাচিব পৰা যাব | অৰ্থাত্‍ আমাৰ প্ৰশ্নটো হ’ল পাঁচটা বস্তুৰ মাজৰ পৰা দুটা কিমান বেলেগ বেলেগ ধৰণে চয়ন কৰিব পৰা যায় ?

READ:   Some Classic Problems in Probability

উত্তৰটো হ`ল - পাস্কেলৰ ত্ৰিভূজৰ ৫ নং শাৰীৰ ২ নং স্থানত থকা সংখ্যাটো, অৰ্থাত্‍ ১০ | মনত ৰখা দৰকাৰ যে ত্ৰিভূজৰ একেবাৰে শীৰ্ষত থকা ১ টোৰ শাৰী নং ০-হে ১ নহয় |

চয়নৰ এই ধৰ্মৰ কাৰণে ৬:৩ টো পঢ়া হয় ৬ চয়ন ৩ বা হিচাবে | যদি আমি সেই পাঁচটা টুপীৰ মাজৰ পৰা দুটা টুপীৰ এটা নিৰ্দ্দিষ্ট  যোৰা চয়ন কৰিব খোজোঁ, তেন্তে তাৰ সম্ভাব্যতা হ’ব ১/১০ |

১৬৫৪ চনতে ব্লেইজ পাস্কেলে জুৱা খেলৰ পাশাগুটিটোৰ  ভিন ভিন সংখ্যা পৰাৰ সম্ভাৱনীয়তা সম্পৰ্কে পৰীক্ষা নিৰীক্ষা চলাইছিল আৰু এই বিষয়ে পীয়েৰ দি ফৰ্মেটৰ সৈতে তেওঁ কৰা আলোচনাৰ পৰাই সম্ভাব্যতাৰ সুত্ৰৰ ভেঁটি তৈয়াৰ হয় বুলি জনা যায় |

ত্ৰিকোণী সংখ্যা আৰু ফিবোনাচি সংখ্যা

পাস্কেলৰ ত্ৰিভূজৰ সহায়ত ত্ৰিকোণী সংখ্যা আৰু ফিবোনাচি সংখ্যাও নিৰ্ণয় কৰিব পাৰি | ত্ৰিকোণী সংখ্যা সহজেই উলিয়াব পাৰি - বাওঁফালৰ তৃতীয়টো সংখ্যাৰ পৰা আৰম্ভ কৰি ক্ৰমান্বয়ে সোঁফালে তললৈ চালে পোৱা যায় ১,৩,৬,১০ ইত্যাদি | এই বিলাকেই হ’ল ত্ৰিকোণী সংখ্যা |

অন্যহাতে ফিবোনাচি সংখ্যা নিৰ্ণয় কৰা পদ্ধতিটো কিছু জটিল | ইহঁতক উলিয়াবলৈ তলত দেখুওৱাৰ দৰে কোণীয়া-কোণীকৈ যাব লাগিব | অৰ্থাত্‍ আমি বিচৰা সংখ্যাবোৰ হ’ব -  ১, ১, ১+১, ১+২, ১+৩+১, ১+৪+৩, ১+৫+৬+১ ইত্যাদি |

----------------------------------------------------

লেখক: ড৹  প্ৰবোধ বৰা
অধ্যাপক, অনুজীৱ বিজ্ঞান বিভাগ
পশু চিকিত্‍সা বিজ্ঞান মহাবিদ্যালয়
অসম কৃষি বিশ্ববিদ্যালয়
খানাপাৰা, গুৱাহাটী-৭৮১০২২

--------------------------------------------------------------------------------------

[টোকা:- “গণিত চ’ৰা” প্ৰকাশ হোৱাৰ আগলৈকে অসমীয়া ভাষাত চাইবাৰ জগতত প্ৰকাশিত গণিত সম্পৰ্কীয় প্ৰবন্ধৰ সংখ্যা সম্ভৱত: আঠটা আৰু ইয়াৰে সাতটাৰ লেখক হ’ল ড৹  প্ৰবোধ বৰা। উল্লেখযোগ্য যে চাইবাৰ জগতত প্ৰকাশিত, কোনো অসমীয়া ব্যক্তিয়ে ইংৰাজী ভাষাত লিখা গণিত সম্পৰ্কীয় প্ৰবন্ধৰ সংখ্যা শূণ্য ! তেখেতৰ সাতোটা প্ৰবন্ধৰ পৰা দুটা প্ৰবন্ধ বৰ্তমান প্ৰকাশ কৰা হ’ল।  - সম্পাদক]

-----------------------------------------------------------------------------------------------------------------------------------------------

[ad#ad-2]

Print Friendly, PDF & Email
The following two tabs change content below.
No Comments

Post A Comment