MA পাতনিঃ এই অধ্যায়টোত ৰামানুজনৰ জীৱিত বন্ধুকেইজনমান (সেই সময়ৰ) আৰু মিচেছ ৰামানুজনৰ স্মৃতিচাৰণ সামৰা হৈছে| এইসকল পাঁচটা দলত আছে স্কুল-বন্ধু, কলেজ-বন্ধু, কেম্ব্ৰিজৰ বন্ধু আৰু তেওঁৰ ঘৈণী| প্ৰতিটো স্মৃতিচাৰণ আৰম্ভ হৈছে নামেৰে আৰু লগতে সংযুক্ত ব্যক্তিজনৰ কিছু সবিশেষেৰে|   এম.বি / এম.চি.ৰ স্কুল-বন্ধু   MB মি. এন.ৰঘুনাথনৰ স্মৃতিচাৰণ ৰামানুজনৰ স্কুল-বন্ধু আৰু অৱসৰপ্ৰাপ্ত...

সৰলতৰ সমস্যা কেতবোৰ গণিতত অতি আমোদজনকভাৱে আত্মগমনকাৰী। পাটীগণিতৰ সমস্যা কেতবোৰ খুব সম্ভৱ সকলোতকৈ সৰলতৰ আৰু তুলনামূলকভাৱে স্বাভাৱিক। পাটীগণিতৰ নাম ল’লেই ইয়াৰ লগত এৰাব নোৱাৰাকৈ জড়িত স্বাভাৱিক সংখ্যাসমূহ, যেনে, 1, 2, 3, 4,... এইবোৰ আহি পৰে আৰু ইয়াৰ লগে লগেই 2+3=5, 4+3=7, ইত্যাদিৰ ধাৰণাও আহি যায়। পিছে স্বাভাৱিক সংখ্যাৰ যোগ প্ৰক্ৰিয়াই সংখ্যাবোৰৰ ভিতৰত থকা বিশেষ ৰহস্য উদঘাটন নকৰে। গণিতজ্ঞৰ মন আকৰ্ষণ কৰিব পৰা বহুতো আমোদজনক তথা আত্মমগনকাৰী বৈশিষ্ট্য সোমাই আছে স্বাভাৱিক সংখ্যাৰ পূৰণ প্ৰক্ৰিয়াৰ মাজতহে (অৱশ্যে পূৰণ প্ৰক্ৰিয়াটো যোগ প্ৰক্ৰিয়াৰেই এক সংক্ষিপ্ত ৰূপ। তথাপিও পূৰণ প্ৰক্ৰিয়াটোৰ নিজস্ব বৈশিষ্ট্যৰে ই অতি ‘ভাৱ গধুৰ’ কথা কয়।) উদাহৰণস্বৰূপে, তেনে এটা অতি সৰল আৰু স্বাভাৱিক সংখ্যা হ'ল মৌলিক সংখ্যা। মৌলিক সংখ্যা হ’ল সেই বোৰ স্বাভাৱিক সংখ্যা, যিবোৰক দুই বা তাতোধিক সৰু স্বাভাৱিক সংখ্যাৰ পূৰণফল হিচাবে প্ৰকাশ কৰিব নোৱাৰি। মৌলিক সংখ্যাৰ সংজ্ঞা দিয়াৰ পাছত স্বাভাৱিকতেই মনলৈ অহা প্ৰশ্নকেইটা হ’ল— মৌলিক সংখ্যা কেইটা? অথবা এনে বৃহত্তম মৌলিক সংখ্যা আছেনে যে ইয়াতকৈ ডাঙৰ যি কোনো স্বাভাৱিক সংখ্যাক, এই মৌলিক সংখ্যাটি আৰু ইয়াতকৈ সৰু কোনো মৌলিক সংখ্যাৰ পূৰণ হিচাপে লিখিব পাৰি? ইউক্লিদেই পোনতে এই প্ৰশ্নটিৰ উত্তৰ দিয়ে— এটা অতি সুন্দৰ প্ৰমাণৰদ্বাৰা। ইয়াত তেওঁ দেখুৱায় যে “মৌলিক সংখ্যাৰ সংখ্যা (number) অসীমভাৱে বঢ়াই নিব পাৰি।” অৰ্থাৎ অন্য ভাষাত ‘বৃহত্তম মৌলিক’ বুলি কোনো সংখ্যা নাই। আমাৰ এই প্ৰবন্ধটিৰ আলোচনাৰ বাটত ইউক্লিদৰ প্ৰমাণটি পাম কাৰণে অলপ অপেক্ষাই কৰোঁ। এতিয়াৰ পৰা আমি (এই প্ৰবন্ধটিত) মৌলিক সংখ্যাক অকল ‘মৌলিক’ বুলিয়েই ক’ম। মৌলিকৰ সংখ্যা অসীম বুলি জনাৰ পিছত অন্য এটা স্বাভাৱিক প্ৰশ্ন উঠে যে— এটাও মৌলিক বাদ নোযোৱাকৈ তালিকাভুক্ত কৰিবপৰা এনে কোনো নিয়ম আছে নেকি? গ্ৰীক দাৰ্শনিক আৰু গণিতজ্ঞ ইৰাটস্থেনিচে এই ক্ষেত্ৰত এটা উপায় দিয়ে। তেওঁৰ এই পদ্ধতিক ‘চালনীৰে বাছনি’ (sieve) বুলিব পাৰি। এই পদ্ধতিত পোনতে 1, 2, 3, 4,... ইত্যাদি সংখ্যাবোৰ লিখি লোৱা হয়। তাৰ পিছত, প্ৰথমে 2ৰ গুণিতকবোৰ (multiple) কাটি যোৱা হওক (যেনিবা চালনীৰে সৰি পৰিল!)। ইয়াৰ পিছত 3ৰ গুণিতকবোৰ কটা হওক, তেনেদৰে 5 ইত্যাদি। তলৰ তালিকাখনত এশটা স্বাভাৱিক সংখ্যাৰপৰা মুঠতে 25টা মৌলিক বাছনিত উঠিল—

গণিতত কল্পনা! সঁচাকৈয়ে যুক্তিৰ বাহিৰত যেনেই লাগে। পিছে গাণিতিক যুক্তিৰ নিছিগা হাৰডালিত গণিতৰ নানা হীৰা মৰকত গাঁথি যাঁওতে গণিতজ্ঞসকলে যিধৰণৰ সমস্যাৰ সমুখীন হ’ব লগা হয় সেই সকলোবোৰেই গণিতৰ অগ্ৰগতিৰ ইতিহাসত নিজে নিজে সোমাই পৰে আৰু কিছুদূৰ আগবাঢ়ি আহি পিছলৈ উভটি চালে কোনো কোনো গাণিতিক সংঘটন অতি আচৰিত যেন লাগে। ঠিক এনে ধৰণৰ গাণিতিক সংঘটন এটাৰ বিষয়ে আলোচনা কৰিব খুজিছো আমাৰ এই প্ৰবন্ধটিত। সেয়া হ’ল বৰ্তমান গণিতৰ এৰাব নোৱাৰা অংশ— জটিল সংখ্যা, যাৰ স’তে $$i=sqrt{-1}$$ ওতঃপ্ৰোতভাৱে জড়িত। এই $$i=sqrt{-1}$$ সংখ্যাটিক নাম দিয়া হৈছিল “কাল্পনিক সংখ্যা”। এই “অসম্ভৱ” বা কাল্পনিক সংখ্যাৰ উৎপত্তি, ইয়াৰ ক্ৰমবিকাশ তথা প্ৰয়োগ ইত্যাদি সম্পৰ্কে আলোচনা কৰাই প্ৰবন্ধটিৰ উদ্দেশ্য। সোতৰ শতিকা পৰ্যন্ত ঋণ সংখ্যাবোৰো এক ধৰণৰ গোলমলীয়া সংখ্যায়েই আছিল| ষোল শতিকাৰ মাজভাগত এণ্টইন আৰ্ণল্ডে (Antoine Arnauld) $$frac{-1}{1}=frac{1}{-1}$$ এনে ধৰণৰ সমতাত আশ্চৰ্য প্ৰকাশ কৰিছিল| এই আশ্চৰ্যকৰ যুক্তিটো আছিল এনে ধৰণৰ যে— সৰু সংখ্যা এটা আৰু ডাঙৰ সংখ্যা এটাৰ অনুপাত জানো ডাঙৰ সংখ্যাটো আৰু সৰু সংখ্যাটোৰ অনুপাতৰ সমান হ’ব পাৰে? সেয়ে ওপৰৰ ধৰণৰ সমতা তেওঁৰ চিন্তাৰে (যুক্তিৰে) এক ধৰণৰ বুৰ্বকামী (nonsense) আছিল| 1712 চনত কলন গণিতৰ অন্যতম পিতৃস্বৰূপ লাইবনিজে (Leibnitz) কৈছিল যে, এই সন্দৰ্ভত ‘Arnauld had a point’, থমাচ্‌ হেৰিঅত্‌ (Thomas Harriot. 1560-1621) ঋণ সংখ্যাক লৈ হোৱা গাণিতিক সমস্যাৰ স’তে জড়িত আছিল| অৱশ্যে তাৰো বহুত আগতে 628 খীষ্টাব্দত ভাৰতীয় গণিতজ্ঞ ব্ৰক্ষ্মগুপ্তই কৃতকাৰ্যতাৰে ঋণ সংখ্যাৰ খেল খেলাৰ উদাহৰণ আছে| পিছে ৰাফেল বম্বেলিয়েহে (Raphel Bombelli) ঋণ সংখ্যাৰ স্পষ্ট সংজ্ঞা দিয়ে|

The standard form of a linear equation in $$n$$ unknowns $$x_1,x_2,\dots ,x_n$$ is $$a_1x_1+a_2x_2+\dots +a_nx_n=b,$$ where $$a_1,a_2,\dots ,a_n$$ and $$b$$ are constants. Here constants mean some real numbers (these constants may come from any number field). A collection of one or more linear equations of same variables is called...

Joseph O’Rourke Cambridge University Press, 2011, xii+177 pp.   This book presents in three parts some geometric and physical aspects that have, for a long time, fascinated many people attracted by elegant structures provided by linkages, paper folding and polyhedral models. Linkages used to be mainly associated with mechanical...