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The secret
Well yes! I cheated.

I The question I asked about the colour? It can be answered in
only 32 ways.

I My deck of cards had only 32 of them. Not only that, the
deck was arranged in a particular way so that each
consecutive set of 5 cards had a unique colour pattern.

I Let’s look at an example.
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Example
with 3 persons

I Suppose there were only 3 spectators, then there would have
been only 8 possibilities for the answer.

I RRR; RRB; RBR; RBB; BRR; BRB; BBR; BBB

I It can be checked that RRRBBBRB is a sequence of the type
I want, to do the trick.

I For the sake of convinience, and to give a more mathematical
feel, let R = 1 and B = 0 in the sequences of the above type.
Phew!
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de Bruijn sequences
(Nicolaas Govert de Bruijn)

Definition
A de Bruijn sequence with window length k is a zero-one sequence
of length 2k such that every k consecutive digits appears only once
(going around the corner).

Example

The previous example was RRRBBBRB, or, for us now 11100010.
This is a de Bruijn sequence of window length 3.

If we have a de Bruijn sequence of window length k , we can do the
trick with 2k cards.

But, do they even exist for all k?
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Nicolaas Govert de Bruijn
Thank you, Wikimedia



Existence
also, sort of a proof

Now, comes graph theory!

Definition
An Eulerian circuit in a directed graph is a walk that uses each
edge exactly once and winds up where it started.

Construction of our directed graph

Form a graph with vertices being the strings of zero-one sequences
of length k � 1, so there are 2k�1 of them. An edge goes from
vertex x to vertex y if there is a zero-one string of length k that
has x at its left and y at its right.

Such a graph is called, a de Bruijn graph.
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An example
on four vertices

I An Eulerian circuit here would be 11; 10; 01; 10; 00; 00; 01; 11

I Our walk follows the arrows, so each vertex in the cycle has a
common center with the following one. Collapsing the cycle
by just indicating the new digit added gives us a de Bruijn
cycle : 11101000.



An example
on four vertices

I An Eulerian circuit here would be 11; 10; 01; 10; 00; 00; 01; 11
I Our walk follows the arrows, so each vertex in the cycle has a

commoncenter with the following one.Collapsing the cycle
by just indicating the new digit added gives us a de Bruijn
cycle: 11101000.



An example
on four vertices

I An Eulerian circuit here would be 11; 10; 01; 10; 00; 00; 01; 11

I Our walk follows the arrows, so each vertex in the cycle has a
commoncenter with the following one.Collapsing the cycle
by just indicating the new digit added gives us a de Bruijn
cycle: 11101000.



An example
on four vertices

I An Eulerian circuit here would be 11; 10; 01; 10; 00; 00; 01; 11
I Our walk follows the arrows, so each vertex in the cycle has a

commoncenter with the following one.

Collapsing the cycle
by just indicating the new digit added gives us a de Bruijn
cycle: 11101000.



An example
on four vertices

I An Eulerian circuit here would be 11; 10; 01; 10; 00; 00; 01; 11
I Our walk follows the arrows, so each vertex in the cycle has a

commoncenter with the following one.Collapsing the cycle
by just indicating the new digit added gives us a de Bruijn
cycle

: 11101000.



An example
on four vertices

I An Eulerian circuit here would be 11; 10; 01; 10; 00; 00; 01; 11
I Our walk follows the arrows, so each vertex in the cycle has a

commoncenter with the following one.Collapsing the cycle
by just indicating the new digit added gives us a de Bruijn
cycle: 11101000.



Existence
moving towards the proof

So, for any k, an Eulerian circuit in the de Bruijn graph gives
us a de Bruijn cycle with window length k.

Theorem (Euler)
A connected graph has an Eulerian circuit if and only if each vertex
has an equal number of edges leading in as leading out.

This is good news!
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Leonhard Euler
The master of us all!



Existence
My God! This is taking so long...

I For the de Bruijn graph, there are exactly two edges leading
out to each vertex, A zero-onek � 1 tuple can be �nished o�
to a k tuple in just two ways.

I Similarly, there are exactly two ways of coming into a vertex.
I We can go from any vertex to any other vertex along some

path following the arrows.If you want to check, then do so by
changing one digit at a time.

Theorem
de Bruijn sequences exist for everyk.

But, how many of them are there?
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Some history...
...and the �nale (almost).

According to de Bruijn, the existence of de Bruijn sequences for
each order were �rst proved, for the case of alphabets with two
elements, by Camille Flye Sainte-Marie in 1894, whereas the
generalization to larger alphabets is originally due to Tanja van
Aardenne-Ehrenfest and himself.

Then why the name de Bruijn?

It is because of the following.

Theorem (de Bruijn)
For anyk, the number of de Bruijn sequences is exactly22k� 1� k .

Proof? Let's leave it as an exercise?
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