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Abstract

This paper explores the fundamental concepts and applications of the Fourier Transform, a convolution
tool in mathematics, physics, and engineering. By establishing the connection between the Taylor series,
Fourier series, and the Fourier Transform, we provide a solid foundation for understanding the transform’s
versatility. The paper highlights the expansion of the Fourier Transform, which is analogous to the Taylor
series expansion, and utilizes orthogonality properties of the Fourier series representation. The paper also
explores the applications of the Fourier Transform in signal processing, music synthesizing, and climate

analytics.
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1 Introduction

This paper delves into the diverse applications of the Fourier Transform, a pivotal tool in signal processing
widely utilized across various scientific and engineering disciplines. We establish a mathematical foundation
by exploring the integrals associated with the Fourier transform and its properties. Following this, we
obtain the transform by employing Taylor expansion and Fourier series representations for sin and cos. This
approach reinforces the theoretical underpinnings of the transformation and its practical applications.

Throughout the paper, we explore the impact and utility of the Fourier Transform in two significant fields:
music processing and climate analysis. By applying the Fourier Transform, we can dissect complex audio
signals into manageable frequency components, providing essential insights into the structure and composition
of music. Similarly, in climate analysis, the Fourier Transform assists in identifying periodic patterns and
trends within vast datasets, offering valuable predictions and foresight about environmental conditions.

The latter sections of the paper extend these foundational techniques to address more complex and
nuanced applications, illustrating the flexibility and robustness of the Fourier Transform. Through detailed
examples and case studies, this paper aims to highlight the immense potential of the Fourier Transform in
these domains and inspire further innovations and applications in related fields.

The paper proceeds as follows. In Section 2 we explore the Fourier series and the Fourier transform, in
Section 3 we explore the applications of the Fourier Transform in signal processing and music synthesising, as
well as its variations. In Section 4 we explore the applications of the Fourier Transform in climate analytics
and Empirical Orthogonal Functions.



2 Fourier analysis

Fourier analysis allows us to decompose complex functions into simpler, oscillating components. At the heart
of Fourier analysis lie the Fourier series and the Fourier transform, which is similar to the Taylor series
expansion. This section will explore the connection between these concepts and derive the Fourier transform
using the Taylor series.

Theorem 2.1 (Taylor Series and Expansion). Given a function f(x) that is infinitely differentiable at a point
a, the Taylor series expansion of f(x) around a is given by:
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where f™)(a) denotes the n — th derivative of f(x) evaluated at x = a
Let’s consider the exponential function e” . Using the Taylor series expansion around z = 0, we can write:
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Similarly, for the complex exponential function e**, we have:
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proved through individual expansions of cos(x) and sin(x):-
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This equation is known as Euler’s formula, which relates the exponential function to the trigonometric
functions sin(x) and cos(z).

Theorem 2.2 (Derivation of the Fourier Series). The Fourier series is a way to represent a periodic function
as an infinite sum of sinusoidal functions. Consider a periodic function f(x) with period 2rx. The Fourier
series representation of f(x) is given by:
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where the coefficients a,, and b, are given by:
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Proof. Let’s assume that f(x) equals the given Fourier series representation. We will show that the coefficients
a, and b,must be given by the formulas above.
Multiply both sides of the Fourier series representation by cos(mz) and integrate over the interval [—, 7]:
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Using the orthogonality properties of the trigonometric functions, we can simplify the right-hand side:
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The first integral on the right-hand side is zero for m # 0 and 27 for m = 0. This is because cos(mz) is
an odd function when m # 0, and the integral of an odd function over a symmetric interval is zero. When
m = 0, cos(mzx) = 1, and the integral evaluates to 2.

The second integral is zero for n # m and « for n = m # 0. This can be shown using the orthogonal-
ity property of cosine functions:
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The third integral is f sin(nx)sin(ma)dz, is always zero because the product of sine and cosine func-
tions with the same period is an odd function. The integral of an odd function over a symmetric interval is
zero.

Therefore, using the orthogonality properties of trigonometric functions and the fact that the product of
sine and cosine functions is odd, we can simplify equation (2.1) to:
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This allows us to recover the Fourier series coefficients a,, and b,,. O

Theorem 2.3 (Equality of Continuous Periodic Functions and their Fourier Series). Let f(x) be a continuous
periodic function with period 27, except possibly at a countable number of points. Then, f(x) is equal to its
Fourier series representation:
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The convergence of the Fourier series to the function f(x) is point-wise, and the equality holds at all
points where f(x) is continuous. At the countable number of discontinuities, the Fourier series converges to
the average of the left and right limits of f(z).

The Fourier transform is a generalization of the Fourier series that allows us to represent non-periodic
functions as a continuous sum of sinusoidal functions. To derive the Fourier transform, we start with the
Fourier series and take the limit as the period tends to infinity.

Consider a non-periodic function f(z) defined on the interval [—L,L]. We can extend this function
periodically with period 2L and represent it using a Fourier Series.
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where the coefficients a,, and b,, are given by:
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Now, let’s define the angular frequency w,, = “* and the frequency interval Aw, = 7. As L — oo the

frequency interval Aw becomes infinitesimally small, and the sum in the Fourier series becomes an integral.



We can rewrite the Fourier series as:
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Taking the limit as L — oo (and consequently Aw — 0 ), we obtain the Fourier Transform:
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where A(w) and B(w) are the continuous versions of the Fourier coefficients, given by:
This equation is known as Euler’s formula, which relates the exponential function to the trigonometric
functions sin(x) and cos(x).

3 Fourier Transform in Signal Processing and Music Synthesising

The Fourier Transform has revolutionized the field of signal processing, enabling the analysis, manipulation,
and synthesis of complex signals in various domains, including audio, speech, and telecommunications . This
section explores the fundamental concepts and techniques of Fourier analysis in signal processing, highlighting
its impact on the development of modern technologies.

3.1 Signal Representation in the Frequency Domain

One of the primary applications of the Fourier Transform in signal processing is the representation of signals
in the frequency domain. The Fourier Transform allows us to decompose a time-domain signal into its
constituent frequency components, providing valuable insights into the signal’s spectral content .

Consider a continuous-time signal z(¢). The Fourier Transform of x(t), denoted by X (w), is defined as:
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where w is is the angular frequency, related to the ordinary frequency f by w = 2nf. The Fourier
Transform maps the time-domain signal z(t) to its frequency-domain representation X (w), which describes
the amplitude and phase of each frequency component present in the signal. The amplitude of the Fourier
Transform represents the strength or magnitude of each frequency component, indicating how much that
particular frequency contributes to the overall signal. The phase of the Fourier Transform describes the
relative position or timing of each frequency component, specifying where in its cycle each component starts
at time zero. This representation allows for a deeper understanding of the signal’s properties and enables
the application of frequency-domain techniques for signal processing tasks such as filtering, modulation, and
compression.
For example, in audio signal processing, the Fourier Transform can be used to analyze the spectral content
of a musical recording. By examining the amplitude and phase of the frequency components, we can identify
the dominant frequencies, harmonics, and overtones that contribute to the timbre and character of the sound
. This information can be used for various applications, such as audio equalization, pitch correction, and
sound synthesis.

3.2 Discrete Fourier Transform (DFT) and Fast Fourier Transform (FF)

In practice, most signals are processed in the digital domain using discrete-time samples. The Discrete
Fourier Transform (DFT) is a numerical approximation of the continuous Fourier Transform, adapted for
discrete-time signals . Given a sequence of N samples x [n], the DFT is defined as:
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The DFT computes the frequency-domain representation of the discrete-time signal, providing a set of NV
complex coefficients X [k] that describe the amplitude and phase of the discrete frequency components.



However, the computational complexity of the DFT grows quadratically with the number of samples,
making it inefficient for large datasets. The Fast Fourier Transform (FFT) is an efficient algorithm that
computes the DFT in O(NlogN) time, revolutionizing the field of digital signal processing . The FFT
exploits the symmetries and periodicities in the DFT calculation, reducing the number of required arithmetic
operations and enabling real-time processing of large datasets.

One prominent application of the FFT is in the field of digital communications. In modern wireless
communication systems, such as 4G and 5G networks, the FFT is used to implement Orthogonal Frequency
Division Multiplexing (OFDM). OFDM is a multicarrier modulation technique that divides the available
bandwidth into multiple orthogonal subcarriers, each carrying a portion of the data. The FFT is used to
efficiently modulate and demodulate the data symbols onto these subcarriers, enabling high-speed and reliable
data transmission in challenging wireless environments.

3.3 Applications in Audio and Speech Processing

Audio Processing: The Short-Time Fourier Transform (STFT) is commonly used to analyze time-varying
audio signals. By dividing the signal into short, overlapping segments and applying the Fourier Transform to
each segment, the STFT provides a time-frequency representation of the signal. This representation enables
tasks such as audio denoising, pitch shifting, and time stretching. Techniques like spectral subtraction and
Wiener filtering can be applied to remove noise components while preserving the desired signal, enhancing
the overall audio quality.

Speech Processing: In speech processing, the Fourier Transform is used for spectral analysis and feature
extraction. The spectral envelope of speech signals, obtained through the Fourier Transform, provides valu-
able information about the vocal tract characteristics and phoneme content. This information is utilized in
speech recognition systems, speaker identification, and voice synthesis applications. Mel-Frequency Cepstral
Coefficients (MFCCs), derived from the Fourier Transform, capture the essential characteristics of the speech
signal and serve as input to machine learning algorithms like Hidden Markov Models (HMMs) or Deep Neural
Networks (DNNs) for speech recognition and transcription.

Voice Synthesis and Text-to-Speech: The Fourier Transform plays a crucial role in voice synthesis and
text-to-speech systems. By manipulating the spectral components of speech signals, it is possible to generate
artificial speech that closely resembles human speech. Techniques like concatenative synthesis and statistical
parametric speech synthesis rely on the Fourier Transform to analyze and modify the spectral characteristics
of recorded speech samples, enabling the synthesis of new speech signals based on given text input. The
precise control and modification of speech parameters, such as pitch, duration, and timbre, result in natural-
sounding synthesized speech.

The Fourier Transform’s ability to analyze and manipulate the spectral components of audio and speech
signals has led to significant advancements in these areas, enabling the development of sophisticated and
intelligent audio and speech technologies that enhance human-computer interaction and communication.

3.4 Applications in Music Synthesis and Sound Design

The Fourier Transform has become an indispensable tool in the field of music synthesis and sound design,
enabling the creation of complex and realistic sounds by manipulating their frequency components. By
applying Fourier analysis techniques, sound designers and music producers can manipulate audio and media
files to their .

One of the fundamental applications of the Fourier Transform in music synthesis is additive synthesis.
Additive synthesis involves creating complex sounds by combining multiple sinusoidal components with dif-
ferent frequencies, amplitudes, and phases. The Fourier Transform allows for the analysis of existing sounds,
revealing their frequency composition and enabling the extraction of individual components.

For a given sound signal s(t), its Fourier Transform S(w) is defined as:

S(w) = /_ZOO s(t)e "tdt

The resulting frequency-domain representation S(w) provides information about the amplitudes and
phases of the constituent sinusoidal components. Sound designers can create new sounds with desired timbrel
characteristics by selectively manipulating these components and applying the inverse Fourier Transform.



The inverse Fourier Transform, which converts the frequency-domain representation back to the time
domain, is given by:

s(t) = %/ S(w)e™tdw

Another powerful application of the Fourier Transform in music synthesis is spectral modeling synthesis
(SMS). SMS is a technique that allows for the analysis and synthesis of sounds based on their time-varying
spectral characteristics. The Short-Time Fourier Transform (STFT) is employed to analyze short segments
of the audio signal, providing a-frequency representation.

The STFT of a signal s(¢) is defined as:

STFT {s(t)} (t,w) = /Oo s(tyw(t — 1)e” ™t
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where w(t) is a window function that selects a short segment of the signal centered at time. 7 represents
the time shift or time instant at which the STFT is computed.

By analyzing the STFT, sound designers can identify and extract the time-varying spectral envelope and
the corresponding sinusoidal components. The spectral envelope represents the overall shape of the frequency
spectrum and contributes to the perceived timbre of the sound. The sinusoidal components capture the fine
details and harmonics of the sound.

Spectral Modeling Synthesis(SMS), defined as a technique that allows for the analysis and synthesis
of sounds based on their time-varying spectral characteristics, allows for the independent manipulation of
the spectral envelope and the sinusoidal components, enabling sound designers to create hybrid sounds by
combining the spectral envelope of one sound with the sinusoidal components of another. This technique is
widely used in creating realistic instrument sounds, cross-synthesis effects, and morphing between different
sounds.

The Fourier Transform also plays a crucial role in sound design techniques such as filtering and equal-
ization. Filtering involves selectively attenuating or boosting specific frequency ranges of an audio signal
to shape its timbral characteristics. Equalization is the process of adjusting the balance between frequency
components in an audio signal to achieve a desired tonal balance or to compensate for frequency response
irregularities. By applying frequency-domain filters to the Fourier Transform of an audio signal, sound de-
signers can selectively attenuate or boost specific frequency ranges to shape the timbral characteristics of the
sound.

For example, a low-pass filter can be applied in the frequency domain by multiplying the Fourier Transform
of the signal with a filter function H(w) that attenuates high frequencies:

Sfiltered(w) = S(w) X H(w)
where H(w) is typically a function that decreases with increasing frequency, such as:

1
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Here, w, is the cutoff frequency, and n determines the steepness of the filter roll-off.
By applying the inverse Fourier Transform to the filtered frequency-domain signal, the filtered time-
domain signal can be obtained:
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This technique allows sound designers to sculpt the frequency content of sounds, emphasizing or atten-
uating specific frequency ranges to achieve desired sonic characteristics. Hence, the Fourier Transform’s
pivotal role in music synthesizing and signal processing can be proved using mathematical software. Below
are examples using M athematica™™:
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Figure 3.1: The plot illustrates the cosine function with varying angular frequencies, specifically cos(3002z),
cos(x), cos(0), and cos(0.01). The frequency of the cosine function is determined by the coefficient of x inside
the cosine argument. A higher coefficient leads to a higher frequency and more oscillations within a given
interval. The plot demonstrates how the Fourier Transform can represent a signal as a sum of cosine functions
with different frequencies, which is fundamental to analyzing and synthesizing audio signals in music and
sound applications.
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Figure 3.2: The diagram illustrates a time-domain signal and its corresponding power spectrum, obtained
using the Discrete Fourier Transform (DFT). The left plot shows a time-domain representation of a signal
with varying amplitudes over time, while the right plot displays the power spectrum of the signal, computed
as the squared magnitude of the DFT. The power spectrum reveals distinct peaks at specific frequencies,
indicating the presence of dominant frequency components in the original signal. These peaks correspond to
the frequencies of the sinusoidal functions that make up the signal. Even though the original time-domain
signal does not clearly show the constituent frequencies, the DFT recovers these frequencies, demonstrating
its ability to extract frequency information from a complex signal. The punchline is that the DFT enables
us to identify the frequencies present in the original signal, even when they are not readily apparent in the
time-domain representation. This is a fundamental concept in signal processing, as it allows for the analysis,
manipulation, and synthesis of signals based on their frequency content.
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4 Fourier Transform in Climate Analytics

The Fourier Transform has emerged as a powerful tool for analyzing and understanding climate data, enabling
researchers to identify patterns, trends, and periodicities in long-term climate records. By applying Fourier
analysis techniques to climate variables such as temperature, precipitation, and atmospheric circulation
patterns, scientists can gain valuable insights into the underlying dynamics and drivers of climate variability
and change.

One of the primary applications of the Fourier Transform in climate analysis is the study of climate
oscillations and teleconnections. Climate oscillations are recurring patterns of variability in the Earth’s
climate system, often characterized by specific frequency ranges and spatial patterns. Examples of well-
known climate oscillations include the El Nifio-Southern Oscillation (ENSO), the North Atlantic Oscillation
(NAO), and the Pacific Decadal Oscillation (PDO).

To investigate these oscillations, climate researchers apply the Fourier Transform to time series data of
relevant climate variables. For instance, consider a time series of monthly sea surface temperature anomalies
in the eastern equatorial Pacific Ocean, denoted as T'(t). The Fourier Transform of T'(t), denoted as T'(w), is
given by:

T(w) = /_ h T(t)e ™“tdt

where w is the angular frequency, related to the ordinary frequency f by w = 27 f.

By examining the power spectrum of T'(w) which is defined as ‘T(w) , researchers can identify the

dominant frequencies present in the sea surface temperature variability. The presence of peaks in the power
spectrum at specific frequencies indicates the existence of oscillatory behavior, such as the ENSO cycle, which
typically exhibits a peak in the 2-7 year frequency band.

The Fourier Transform also enables the analysis of spatial patterns associated with climate oscillations
through the use of techniques such as Empirical Orthogonal Function (EOF) analysis. EOF analysis de-
composes a spatiotemporal climate dataset into a set of orthogonal spatial patterns (EOFs) and their corre-
sponding time series (principal components). The EOFs represent the dominant modes of variability in the
dataset, and the principal components describe how these patterns evolve over time.

To perform EOF analysis, the climate dataset is first represented as a matrix X, where each row corre-
sponds to a spatial location and each column corresponds to a time step. The covariance matrix C' of X is
then computed as: .

n—1

C = XTx

where n is the number of time steps and X7 denotes the transpose of X. The EOFs are obtained by solving
the eigenvalue problem:
CE =EFEA

where E' is the matrix of eigenvectors (EOFs) and A is the diagonal matrix of eigenvalues. The principal
components are then computed by projecting the original dataset onto the EOFs:

P=XF

By applying the Fourier Transform to the principal components, researchers can identify the dominant
frequencies associated with each EOF, providing insights into the spatiotemporal characteristics of climate
oscillations.

The Empirical Orthogonal Function (EOF) analysis provides the principal components by solving the
eigenvalue problem CE = EA, where C is the covariance matrix, F is the matrix of eigenvectors (EOF's), and
A is the diagonal matrix of eigenvalues. This process gives the principal components because it decomposes
the covariance matrix into a set of orthogonal spatial patterns (EOFs) and their corresponding time series
(principal components).

Mathematically, the covariance matrix C' captures the spatial correlations and variability within the
climate dataset. By solving the eigenvalue problem, we obtain the eigenvectors F, which represent the
spatial patterns or modes of variability that are orthogonal to each other. These eigenvectors are the EOF's,
and they form a basis for the spatial variability in the dataset.

The corresponding eigenvalues in the diagonal matrix represent the amount of variance explained by each
EQOF. The eigenvalues are typically arranged in descending order, with the first eigenvalue being the largest
and corresponding to the first EOF, which explains the most variance in the dataset.



To obtain the principal components, the original dataset X is projected onto the EOF's using the equation
P = XE. This projection operation transforms the original dataset from the spatial domain to the EOF
domain, resulting in the principal component P. Each principal component is a time series that describes
how the corresponding EOF pattern varies over time.

The principal components are uncorrelated with each other due to the orthogonality of the EOFs. They
represent the temporal evolution of the spatial patterns captured by the EOFs. The first principal compo-
nent corresponds to the first EOF and explains the most variance, while subsequent principal components
correspond to the remaining EOFs and explain decreasing amounts of variance.

By analyzing the principal components, researchers can identify the dominant modes of variability in the
climate dataset and study their temporal characteristics. The EOF analysis allows for a compact represen-
tation of the dataset, where a small number of principal components can capture a significant portion of the
total variance. This dimensionality reduction helps in understanding the underlying structure and dynamics
of the climate system.

Another important application of the Fourier Transform in climate analysis is the study of climate trends
and long-term variability. By applying the Fourier Transform to climate time series, researchers can separate
the signal into different frequency components, allowing them to distinguish between short-term variability,
such as seasonal cycles or interannual oscillations, and long-term trends that may be associated with climate
change.

For example, consider a time series of annual global mean surface temperature anomalies, denoted as
T(t). The Fourier Transform of T'(¢) can be expressed as:

o0

T(w) = / T(t)e ™“tdt
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By examining the power spectrum of the Fourier Transform, researchers can identify the dominant frequencies

contributing to the long-term temperature variability. The presence of peaks at low frequencies indicates the

existence of long-term trends or slow variations, while peaks at higher frequencies correspond to shorter-term

fluctuations, such as interannual or decadal variability.

To separate the long-term trend from the short-term variability, researchers can apply low-pass filtering
techniques in the frequency domain. A low-pass filter, such as a simple rectangular window or a more sophisti-
cated filter (e.g., Butterworth filter), can be applied to the Fourier Transform to attenuate the high-frequency
components while preserving the low-frequency components. The filtered Fourier Transform, denoted as
Tfiltered(w)’ is given by R R

Ttitterea(w) = T'(w) x H(w)

where H(w) is the frequency response of the low-pass filter.
The filtered time series, representing the long-term trend, can be obtained by applying the inverse Fourier

Transform to Tfipered(w):
oo
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By subtracting the long-term trend Tyenq(t) from the original time series T'(¢), researchers can isolate the
short-term variability:
Tvariability(t) = T(t) - Ttrcnd(t)

This decomposition allows for a clearer understanding of the different time scales of climate variability and
their potential drivers, such as natural climate oscillations or anthropogenic factors.

The Fourier Transform also plays a crucial role in the spectral analysis of climate data, which involves
examining the distribution of variance across different frequencies. By computing the power spectral density
(PSD) of a climate time series, researchers can identify the dominant frequencies and assess their relative
importance in explaining the overall variability.

The PSD, denoted as S(w), is defined as:

where T is the length of the time series.
The PSD provides a measure of the variance (or power) contained at each frequency, allowing researchers
to determine the key time scales of variability in the climate system.
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Figure 4.1: The diagram illustrates the application of the Fourier Transform to a climate time series, which
appears to be a record of a climate variable, such as temperature or precipitation, measured over time. The
left plot shows the time-domain representation of the climate signal, with the x-axis representing time and the
y-axis representing the amplitude of the climate variable. The right plot displays the power spectrum of the
climate signal, obtained by computing the squared magnitude of the Fourier Transform. The power spectrum
reveals distinct peaks at specific frequencies, indicating the presence of dominant periodic components in the
climate signal. The x-axis represents the frequency, while the y-axis represents the power or strength of each
frequency component. The peaks in the power spectrum likely correspond to well-known climate oscillations
or cycles. For example, the prominent peak at a frequency of around 0.002 (corresponding to a period of
approximately 500 time units) could represent a multi-year climate oscillation, such as the El Nifio-Southern
Oscillation (ENSO) or the Pacific Decadal Oscillation (PDO). Other peaks at higher frequencies might be
associated with shorter-term variability, such as annual or seasonal cycles. By analyzing the power spectrum,
researchers can identify the dominant frequencies driving the variability in the climate signal and assess their
relative importance. This information is crucial for understanding the underlying dynamics of the climate
system, detecting long-term trends, and attributing observed changes to natural or anthropogenic factors.
The Fourier Transform enables the separation of the climate signal into its constituent frequency components,
facilitating the study of climate variability across different timescales. By examining the power spectrum,
researchers can identify potential periodicities that may be linked to external forcings, such as solar activity or
volcanic eruptions, or internal climate processes, such as ocean-atmosphere interactions or land-atmosphere
feedbacks.
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