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§1 What the theorem is? 
 Statement: Every non-constant polynomial with complex coefficient 

has a root in the set of complex numbers. 

 Equivalently 

 Every polynomial of degree n>=1 over the field of complex numbers 
has n and only n roots. 

 Equivalently 

 Every polynomial of degree n>=1 over the field of complex numbers 
can be expressed as 

   a(z-α1)(z-α2)…(z-αn) 

    Thus if 

   p(z)=zn+an-1z
n-1+...+a1z+a0 is a polynomial, where the 

coefficients a0,a1, …, an-1 or real or complex numbers, then Э a 
complex number α such that p(α)=0. 

 

 



Contd… 

Equivalent formulations of the problem are the following: 

I   Every non-constant polynomial with real coefficient can be expressed 

as product of real linear or real quadratic factors i.e. every 

polynomial with real coefficients has a complex root. 

 

II  For each n>=1, every n×n square matrix over C has an Eigenvector 

(hence an Eigen value) i.e. every linear operator  on an n-

dimensional complex vector space has an Eigenvector. 

 



Contd… 

   The arguments are the following 
     FTA↔I 
Because if FTA is proved, then any polynomial with real coefficients 
can be treated as a polynomial with complex coefficients and can be 
therefore factored into quadratic & linear factors and also realizing 
that any real quadratic will have complex roots in conjugate pairs. 
 
Again if I is proved, then given any polynomial p(z) with complex 
coefficients, then one can construct a polynomial with real 
coefficients as p(z)p(z)=0   i.e. 
|p(z)|2=0. Now any root of the resulting polynomial will either be 
root of the original polynomial or the complex conjugate of a root. 
          Now FTA↔II 
Suppose FTA is proved. Now suppose 
  



Contd… 
 

 

  A=        is any n×n square matrix over C 

 

 

   

 

Consider 

   |zI-A|=0 
i.e.   
 
  `z-a11      -a12   . . .    -a1n 
     -a21      z-a22  . . .   -a2n 
    . 

    . = 0 
    . 
      -an1      -an2  . . .  z-ann  

      

   

 

 

a11       a12   .   .  .   a1n 

a21      a22      .  .  .     a2n 

. 

. 

. 

. 

an1        an2     .  .  .    ann 



Contd… 

Which is  

       f(z)=zn+an-1z
n-1+ … +a1z+a0=0 

If λ is a root of the equation then λI-A is singular. Therefore 

  Эx≠0 :  (λI-A)x=0 i.e. Ax= λx 

Conversely suppose II is true. Then we consider any polynomial  

             f(z)=zn+an-1z
n-1+ … +a1z+a0, n>=1 

& aj € ¢ 

Claim by induction 

      det[λIn-A]=f(λ) where 

 



Contd… 
 

    A= 

 

 

 

For n=1 consider f(z) = z+a0 

   

& take  A=[-a0] 

 

     

 

0  0  0  0  . . . –a0 

1  0  0  0   . .  . -a1 

0  1  0  0  .  . .-a2 

         . 

         . 

         . 

0  0  0  0  . .. 1   -an-1 



Contd…. 

|λI-A|= |λI+a0|= λ+a0=f(λ) 

For n=2 

   f(z)=z2+a1z+a0 

    

   A= 

 

   |λI2-A|=    = λ2+a1λ+a0=f(λ) 

Suppose for n-1 the result has been proved. Then if 

  f(z)=zn+an-1z
n-1+…+a1z+a0 

  f(λ)= λn+an-1λ
n-1+…+a1λ+a0 

0         -a0 

 

1         -a1 

λ          a0 

 

-1       λ+a1 



Contd…. 
 Now if 

 

  A    = 

 

 

 

 

 

Then 

|λI-A|=    λ   0  …  0     a0 

                    -1   λ  …  0  +a1  

                    . 

                  . 

                 0  0  …  -1   λ+an         

 
0  0 .... 0  -a0 

 

1  0  ... 0 –a1 

. 

. 

. 
     0  0  …  1 –an-1 

 
 



Contd… 
 

 =          λ   0  … 0  a1 

     λ   -1   λ  … 0  a2          + 

                              . 

            0  0  …-1 λ+an-1     

 

                (-1)n-1a0        -1   λ  … 0   

                              0   -1  λ  … 0     

                    . 

                      0   0  0  … -1   



Contd… 
 

 =          λ   0  … 0   a1 

      -1   λ  …0   a2         + a0 

       λ          . 
     0  0  …  -1  λ+an-1     
 

 =  λ [ λn-1+an-1λ
n-2+ .. . +a1]+a0  

 =  λn+an-1λ
n-1+ .. . +a1λ]+a0 

 =  f(λ) 
Therefore  

  det[λI-A]=f(λ) 
Therefore if A has a characteristic vector then for some λ det[λI-A]=0 

Therefore f(z)=0 has a root in ¢. 

  



History of Fundamental Theorem of 

Algebra 

Some versions of the statement of Fundamental Theorem of 

Algebra first appeared early in the 17th century in the writings of 

several mathematicians  including Peter Roth, Albert Girard 

and Rene Descartes.  

 

All these mathematicians believed that a polynomial equation of 

degree n must have n roots & the only problem was, they 

believed to show that these roots lie in the set of complex 

numbers. 



 1702: A proof that the FTA was false was given by Leibnitz in 1702 

when he asserted that x4+t4 could never be written as a product of two 

real quadratic factors. His mistake came in not realizing that                                                                                                                                                  

 could be written in the form a+ib, where a and b are real. 

 

 1742: Euler in the year 1742 in correspondence with Nicolaus II, 

Bernouli and Goldbach showed that the Leibnitz counter example 

was false. 

 

 1746: Jean Le Rond d’ Alembert  in the year 1746 made the first 

serious attempt at a proof of the FTA. He published his proof in 

“Recherches sur la Calcul integral, Hist. Acad. Sci. Berlin 

2(1746),182-224”. 

     Proof given by d‟Alembert was not very rigorous and had several 

weaknesses. He used the following Lemma: 

 

 

i



D’Alembert’s Lemma 

 

Suppose f is a non constant polynomial and f(z0)≠0.Then for every 
€>0 there is some z such that  

   |z-z0|<€   and   |f(z)|<|f(z0)| 

 

D‟Alembert‟s proof of this lemma was not very rigorous and it was 
unnecessarily complicated (A simpler proof of the lemma was given 
by Jean Robert Argand in 1806). 

 

Furthermore he also used that a continuous real-valued function on 
a compact set achieves a min. value, a fact that had yet not been 
rigorously proved in D‟Alembert‟s lemma. Therefore proof given by 
d‟Alembert in 1746 was not convincing. 



 1749: Shortly after d‟Alembert‟s proof, leonhard Euler published an 

algebraic proof of the FTA by attempting to prove that „Every polynomial of the 

nth degree with real coefficients has precisely n zeros in ¢’. 

 

 1772: Joseph-Louis Lagrange  in the year 1772 raised many objections to 

Euler‟s proof and pointed out many gaps. He used his knowledge of 

permutation to fill all the gaps in Euler‟s proof. 

 However one significant gap still remained. Euler and Lagrange both assumed 

that a polynomial of degree n would have n roots and that the only thing to be 

proved is that these roots are complex numbers. 

 

 1795: Laplace  in the year 1795 tried to prove the FTA using a complete 

different approach using the discriminant of a polynomial. His proof was quite 

elegant but Unfortunately in his proof also, the existence of roots was 

assumed. 

 



 1799: The first person to notice these gaps was Carl Friedrich Gauss. He is 

credited with producing the first correct proof in his doctoral dissertation, 

which he submitted in the year 1799.About Euler-Lagrange proof Gauss says 

the following: 

‘If one carries out operations with impossible roots, as though they really existed 

and says for example the sum of all the roots of the equation 

            xm+axm-1+bxm-2+……=0 

is equal to –a even though some of them may be impossible to exist (which 

really means: even if some are non existent and therefore missing) then I can 

only say that I thoroughly disapprove of this type of Argument‟. 

Gauss himself did not claim to give the first proper proof. He merely called 

his proof new. 

About D‟Almbert‟s proof, despite his objections he said: 

‘A rigorous proof could be constructed on the basis of D’Alembert’s lines’. 

Gauss proof of 1799 was topological in nature. However, it does not meet 

our present day standards of a rigorous proof. 



 1814: In 1814 jean Robert Argand published a proof based on 

D‟Alembert‟s 1746 idea and was the simplest of all the proofs. Gauss 

himself throughout his life time kept on working over FTA and two 

years after Argand‟s proof, Gauss in 1816,published a second proof 

which was complete and correct. In 1816 itself, Gauss gave third proof 

of the FTA and in 1849,on the 50th Anniversary of his first proof gave 

the fourth proof of the FTA. Since, then (& even before) many 

mathematicians across the globe have been working over the theorem 

and have been publishing various proofs using tools from various 

branches of mathematics, More than 100 proofs have come up so far and 

the recent most in 2012 itself is entitled. 

 2012: "Some Riemannian geometric proofs of the Fundamental 

Theorem of Algebra", Differential Geometry - Dynamical Systems Almira, 

J.M.; Romero, A. (2012), 14: 1–4 

Many mathematician who got attracted by the problem and contributed to 

the solution of the FTA, include the following: 
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    All proofs of the FTA necessarily involve some analysis or 

more precisely the concept of continuity of real or complex 

polynomials. 

    We mention, broadly three different approaches 

 

Complex Analysis 

 

Topology 

 

Algebra 

 

Proofs of Fundamental Theorem of Algebra 



 

 

1st Proof (via Complex Analysis)                              

(R P Boas Amer. Math. Monthly 1964]) 

 This proof is based on the use of a classical theorem of 

Picard. 

 Picard‟s Theorem: if there are two distinct values in the complex 

plane, which a given entire function never assumes, then the 

function is constant. 

 

I Proof of fundamental theorem of algebra 

 Suppose f(z)=zn +an-1z
n-1+...+a1z+a0  , n>=1  & ai‟s are constants. 

 Let if possible f(z)≠0 for any z in C. 

 



Claim    f(z) fails to take on one of the values 

                     1/k,     k=1, 2, ... 

          Suppose for each k  

       f(zk)=1/k      k=1,2,3, … 

Then, we have  

      |f(z)| = |z|n    1+an-1 /z + an-2/z2+ ...+a0/zn 

   

        ∴   |f(z)| ---> ∞ as  |z| ---->∞ 

 

          ∴    ∃R>0: |f(z)|>1 ∀ z: |z|>R. 

 

 

 

Contd… 



But {z: | z | ≤ R} is closed & bounded. ∴ these (zk) have a limit pt. i.e.  ∃ 
a subsequence (zni): 

   zni ----> z ℇ {z: |z| ≤ R}. 

As f is continuous  

  f(z) = lt f(zni) = lt (1/kni)=0 

∴   f(z) fails to take on the value 1/k for some k. 

  

Now   f(z) ≠0 for each z 

              and 

  f(z) ≠1/k for each z 

and f is entire. ∴ f must be a constant by Picard‟s theorem, a contradiction 
because degree of f(z) >= 1. 

 

Hence ∃ z0 ℇ C such that f(z0)=0. 
  

 

 

 

 

Contd… 



Suppose that the polynomial 

  f(z) = an z
 n + an -1 z

 n -1 + ... + a1z
1 + a0 , an=1 

has no root, so that for every complex number z 

    f(z) ≠ 0.  

On this assumption, if we now allow z to describe any closed curve in 

the x, y - plane, f(z) will describe a closed curve Γ which never passes 

through the origin. 

 

Definition: We define the order of the origin O with respect to the 

function f(z) for any closed curve C as the net number of complete revolutions 

made by an arrow joining O to a point on the curve Γ traced out by the point 

representing f(z) as z traces out the curve C. 

  

 

 

 

 

IInd  Proof (Topological Proof) 



    Pf continued For the curve C we take a circle with O as center and with 

radius t. We define the function φ(t) to be the order of O with respect to 

the function f(z) for the circle about O with radius t. Then φ(0) = 0, 

since a circle with radius 0 is a single point, and the curve Γ reduces to 

the point f(0) ≠ 0. 

 

Claim  φ(t) = n for large values of t. 

 

Consider a circle of radius t such that 

  t > 1 and t > {|a0| + |a1| + ... + |an - 1|} 

we have if z lies on this circle, then |z|=t and then 

  

 

 

 

 

Contd… 



  

|f(z) - z n| =|an-1 z 
n-1 + an-2 z 

n-2 + ... + a0|  

                 ≤ |an-1||z|n-1 + |an-2||z|n-2 + ... + |a0|  

                 = tn-1[|an-1| + |an-2| / t + .... +|a0| / tn-1]  

                 ≤ tn-1[|an-1| + ... +|a0|]  

                     < tn =|z|n.  

  

  i.e. 

                 |f(z)-zn| < |z|n =|zn|. 

  

 

 

 

 

Contd… 



  Since the expression on the left is the distance between the two points zn 

and f(z), while the expression on the right is the distance of the point zn 

from the origin, we also see that the straight line joining the two points 

f(z) and zn cannot pass through the origin so long as z is on the circle of 

radius t about the origin.  

 

 

Contd… 

  

 

 



  

  

 

    

 

 

 This being so, we may continuously deform the curve traced out by f(z) 

into the curve traced out by zn without ever passing through the origin, 

simply by pushing each point  of f(z) along the line segment joining it to 

zn. But the order of the origin will vary continuously and can assume 

only integral values during this deformation, it must be the same for 

both the curves. Since the order for zn is n, the order for f(z) must also be 

n. 

 

 

 

Contd… 



  But the order  φ(t)  depends continuously on t, since f(z) is a continuous 

function of z. Hence we shall have a contradiction, for the function φ(t) 

can assume only integral values & therefore cannot pass continuously 

from the value 0 to n. 

 

 [This proof was published in the book:  

 What is Mathematics by R. Courant and H.Robbins, published by 

Oxford University Press in 1966. The proof originally appears in 

American Math. Monthly 42 (1935), p.501-502].  

  

 

 

 

 

Contd… 



Proof based on linear algebra rests on the following 

Lemma1:- For each odd n≥1, every n*n matrix over R has a real eigenvector. 

Equivalently for each odd n≥1, every linear operator on an n-dimensional real 
vector space has an eigenvector. 

Pf:- Any odd degree polynomial over R has real roots by Intermediate value 
theorem. 

 

Lemma2:- For each odd n ≥ 1, any pair of commuting linear operators on an 
n-dimensional real vector space has a common eigenvector. 

Pf:- We prove the result by odd dimension n. 

For n=1  

The result is trivially true because A1=αI  and A2=βI 

Therefore any non-zero vector in a one-dimensional space is a common 
eigenvector of A1 & A2. 

  

 

 

 

 

III Proof (Algebra) 



Suppose n>1 & suppose we have settled the case for odd dimension less 
than n. Let A1 & A2 be two commuting linear operators on a real vector 
space V of dimension n. By Lemma 1 , A1 has a real eigenvalue say λ. 

Let  

U & W be subspaces of V invariant under A1 dim W≥1 since λ is an 
eigenvalue of A1. As A1& A2 commute U & W are invariant under A2 also. 

  

Therefore one of U & W has odd dimension. Two cases arise: 

 Case-I:- If the subspace with odd dimension is U. Then as dim W ≥ 1  

therefore dim U<n & 

                A1: U--->V & 

                A2:  V--->U   

have common eigenvector in U & therefore have a common eigenvector 
in V and we are done. 

  

 

 

 

 

Contd… 



Case-II:- if the subspace with odd dim is W. Then if dim W = dim V 

  Then W=V & therefore A1=λI and  

therefore any eigenvector of A2 in V would also be an eigenvector of 
A1. 

If dim W < dim V=n then by assumption A1 & A2 have common 
eigenvector in W and therefore common eigenvector in V and we are 
done again. 

Remark:-  Lemma 2 does not say that A1 & A2 have a common eigenvalue, 
but rather a common eigenvector. A common eigenvector does not have to 
occur with the same eigenvalue. e.g. 

 let  

 

  

 

 

 

 

Contd… 



   on R3 =V. Then A1A2=A2A1 and therefore A1A2 must have a common 

eigenvector. One common eigenvector is 

 

  

    with eigenvalue 1 for A1 & 3 for A3. In fact, this is the only common 

eigenvector for A1 and A2 in R3(up to scalar multiple). 

 

The next lemma generalizes Lemma1 & Lemma2. 

 

 

 

 

 

Contd… 



Lemma 3  Fix a power of 2 say 2k and a field F. Suppose that for every 

vector space V over the field F, whose dimension is not divisible by 2k, 

every linear operator on V has an eigenvector. Then for every vector space 

V over F whose dimension is not divisible by 2k
,
 any pair of commuting 

linear operators on V has a common eigenvector. 

([Note that if F=R and 2k=2, it becomes Lemma2.]) 

  

Proof:- we prove the result by induction on the dimension of the vector 

space. If dim V=1, then we are trivially done. 

Suppose dim V=d>1 is not divisible by 2k. Suppose, we have settled the 

case for dimension less that d, which are not divisible by 2k. Now let A1 & 

A2 be commuting linear operators on V, where dim V=d. By assumption A1 

has an eigenvector say λ in F.   

 

 

 

 

 

Contd… 



Let 

 

These are subspaces of V and dim W≥1. Also  

A1(U) ⊂ U and A1(W) ⊂ W. 

 Since A1 & A2 commute A2 (U) ⊂ U 

           A2 (W) ⊂ W  

Now dim U + dim W =d which is not divisible by 2k  

∴  at least one of U & W has dimension which is not divisible by 2k. 

Two cases arises: 

Case 1:- if dim V is not divisible by 2k. Since dim W>=1 ∴ dim U< d. Therefore by 
induction hypothesis A1 & A2 have a common eigenvector in U & ∴ in V and we are 
done. 

  

Case 2:- If dim W is not divisible by 2k
. Now if dim W=d, then W=V & A1= λI. 

Therefore any eigenvetor of A2 is also an eigenvector of A1 and 

If dim W< d, then by assumption A1 & A2 have a common eigenvector in W. Therefore 
in V and we are done again. 

 

 

 

 

Contd… 



Now proof of fundamental theorem of algebra. 

 Let A be an n*n matrix over C . Write n = 2k n1 , where k>=0 & n1 odd. 

Suppose k=0 ∴ n = n1 is odd. 

 

Let   H = { T∈ Mn (C) : T*=T } 

Where T* denotes the conjugate transpose of T & Mn (C) denotes the set of 
all n*n matrices over C. 

(dim Mn (C) =n2 over C) 

H is a real vector space & dim H=n2 over R. As n is odd n2
, is also odd. 

Thus dim H is also odd. 

  

Let B be any element of H. Let  

T=AB  Then  T=AB=(AB + (AB)*)/2 + i (AB-(AB)*)/2i 

           =(AB+BA*)/2 + i (AB-BA*)/2i 
 

 

 

 

 

Contd… 



Now L1 : H---->H  be defined by 

 L1(B) = (AB + BA*)/2 &  

L2(B) = (AB-BA*)/2i    ∀B∈H 

  

We can see that  L1(B) = [(AB + BA*)/2]*  

                          = (AB+BA*)/2  and also 

                           L2(B) = [(AB-BA*)/2i]*  

                                     = (AB-BA*)/2i   and also L1 and L2 commute. 
  

∴  as dim H= odd & H is a real vector space therefore L1 & L2 have a 
common eigenvector in H say B i.e. ∋ B≠0 in H such that  

L1(B) =λ1B 

L2(B)= λ2B 

for some λ1 & λ2 real.  
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Hence 

AB=L1(B)+iL2(B) 

     = λ1B+i λ2B 

     = (λ1+i λ2)B   for some B≠0  

  

As B≠0 ∴ ∋X≠0 such that BX≠0 

Therefore A(BX)=(λ1+i λ2)(BX)   BX≠0,Therefore A has an eigenvector. 

 

Now n=2kn1, k≥0 

For k=0, we have settled the case. Hence suppose that k ≥ 1. 

  

Given n=2kn1, k≥1. 

Where 2k is the highest power of 2 dividing n. 
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To show that every operator has an eigenvector. 

Claim: For every vector space whose dimension is not divisible by 2k, 
every linear operator on V has an eigenvector. We shall prove this claim by 
induction on k. 

If k=1,we have already proved the result for odd dimensions. Therefore 
the result is true for k=1. 

We assume that the result is true for k. We shall prove that the result is 
true for k+1 i.e. we consider matrices over C where 2k/n 

but 2k+1
 does not divide n. 

Now let H= {T∈ Mn (C) : T*=T} is a complex vector space of dim 
n(n+1)/2. Thus the highest power of 2 dividing dim H is 2k-1. 

By assumption every linear operator on H has an eigenvector. 

Therefore by lemma 3, any pair of commuting linear operators on H has a 
common eigenvector. 
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Now let 

 L1 :H --->H,     

 L2 :H --->H, 

be defined by  

          L1(B)=AB+BA1 

 L2(B)=ABA1  ∀B∈H  

Then L1 & L2 are linear operators on H, which commute. Therefore L1 & 
L2 have a common eigenvector in H. 

Therefore ∋ O≠B   in H & λ & µ scalars such that  

  L1(B)= λ B  &    

  L2(B)= µB 

i.e.  AB+BA1= λ B &  µB=ABA1 

∴ A2B+ABA1= λ AB. This means  A2B+µB= λ AB.  

Hence  (A2- λ A+µ)B=0.  
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As any complex number has a complex square root, therefore any complex 
quadratic polynomial splits over C. This means that  

  z2- λ z+µ=(z-α)(z-β), α, β ∈ C. Hence 

                       A2- λA+µI=(A-αI)(A-βI). This gives that 

                      (A- α I) (A- βI )B=0 

                 i.e. (A- α I) [(A- βI) B]=0 

Now if (A- βI )B=0,then as B≠0, ∋X≠0 such that BX≠0 

   & then (A- βI)BX=0 

  A(BX)=β(BX) & we are done. 

  

And If  C=(A- βI )B ≠0,then 

       (A-αI)C=0, C≠0 &  

  ∴∋X≠0: CX≠0  & 
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∴ (A-αI)CX=0 

∴ A(CX)=α(CX) & we are done again. 

This completes the proof of the fundamental Theorem of Algebra. 

[This proof given by Keith Conard is a modification of the 

proof given by H.Derksen] 
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A Visual approach: 

     Here, we see a proof of the Fundamental Theorem of Algebra, by 

Daniel J.Velleman, which can be called a “colorized” version of 

d’ Alembert‟s  proof of 1746. In this proof the focus is on the use of 

pictures to see why  the Fundamental Theorem of Algebra is true. 

  Of course, if we want to use pictures to display the behavior of 

polynomials defined on the complex numbers, we are immediately 

faced with a difficulty: The complex numbers are two-dimensional, so 

it appears that a graph of a complex-valued function on the complex 

numbers will require four dimensions.  

Our solution to this problem will be to use colors to represent some 

dimensions. 

  We begin by assigning a color to every number in the complex 

plane(Fig.1). The origin is colored black.  



Points near the origin have dark colors, with the color assigned to a 

complex number z approaching black as z approaches 0. 

 

 Points far from the origin are light, with the color of z approaching 

white as |z| approaches infinity.  

 Every complex number has a different color in this picture, so a 

complex number can be uniquely specified by giving its color. 

 

  We can now use this color scheme to draw a picture of a 

function f : CC as follows: 

 

 We simply color each point z in the complex plane with the color 

corresponding to the value of f(z). 

 

  



 

 

Traveling counterclockwise around a circle centered at the origin, we go 

through the colors of a standard color wheel: red, yellow, green, cyan, blue, 

magenta, and back to red.  

 

 For example, Figure 2is a picture of the function f(z) = z3. Three things are 

immediately evident in this picture. 

 

 First, we see that the center of the picture is very dark. This is because when 

z is small, z3 is very small, and therefore the color assigned to z3 is very dark. 

 

From such a picture, we can read off the value of f(z), for any complex 

number z, by determining the color of the point z in the picture, and then 

consulting Figure 1 to see what complex number is represented by that color. 

  Second, the colors fade out quickly when we move toward the outside of the 

picture. This is because when z is large, z3 is very large, and therefore its color is 

very light. 
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 Third, and the most striking observation about the picture 

is that when we go counterclockwise around a circle 

centered at the origin, we go through the colors of the color 

wheel three times. This illustrates the fact that the argument 

of z3 is three times the argument of z, and therefore the 

image of a circle centered at the origin under the cubing 

function wraps around the origin three times (Figure 2). 

 

 We note that, from Figure 2 that every nonzero complex 

number has three cube roots. For example, the color 

assigned to the number 1 in Figure 1 is a deep red. 

Therefore, the three cube roots of 1 are the three points in 

Figure 2 that are colored this particular shade of red. 
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Let us  now consider picture of a more complicated function 

(Figure 3), 

 

         f (z) = z8 − 2z7 + 2z6 − 4z5 + 2z4 − 2z3 − 5z2 + 4z − 4. 

 

Observations:: 

 

 The fact that the polynomial has degree eight also shows up 

in the picture. For large z, the z8 term in f(z) dominates the 

other terms, and therefore the outer parts of the picture look 

similar to a picture of the function z8: the colors begin to fade 

toward white as we move toward the edges of the picture. 

 

 But before the colors fade out we can see that, as we go 

around the picture counterclockwise, the colors of the color 

wheel are repeated eight times. 

 

 Since the color assigned to the number 0 is black, the roots 

of  f appear in this picture as six black dots. 

 

 Why does f, a polynomial of degree eight, have only six 

roots? 

 

 The reason is that two of the roots are double roots, and this 

fact is also evident in the picture. The single roots occur at the 

points −1, 2, and (−1 ± i√7)/2, and the double roots are at (1 

± i√3)/2. 

 

 At the double roots the colors of the color wheel wrap 

around the root twice, whereas at the single roots they wrap 

around only once. 
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As mentioned earlier d‟Alembart gave a proof of the Fundamental 

Theorem of Algebra in 1746. He gave a lemma which stated as: 

 

d‟Alembert‟s Lemma. Suppose f is a non constant polynomial, and f(z0) 

≠ 0. Then for every ε > 0 there is some z such that |z − z0| < ε and 

|f(z)| < |f(z0)|. 

 

Let us now see a colorized version of the key lemma of d‟Alembert‟s 

proof, which is known as Darker Neighbor Principle. 

 

Darker Neighbor Principle. In any picture of a non constant 

polynomial, for any point that is not black, there is a nearby point that 

is darker. 

 

“Colorized” version of d‟Alembert‟s proof of Fundamental Theorem of 

Algebra of 1746. 

 

Suppose f is a non constant polynomial. Draw a picture of f on the 

square S = {x + iy : −R ≤ x ≤ R,−R ≤ y ≤R}, for some R. Since S is 

compact and |f(z)| is continuous, there is a point in S at which |f(z)| 

achieves its minimum value. This point will be the darkest point in the 

picture. 

 

 



 

 

We have already observed that, since the highest degree term of f(z) will 

dominate the others when z is large, the colors in the picture will fade out toward 

white around the outside of the picture, if R is sufficiently large. It follows that the 

darkest point in the picture cannot be on the boundary of S, so this darkest point 

will be in the interior of S. But then this point must be 

black, because if it were not, then, by the Darker Neighbor Principle, some nearby 

point would be darker. This black point is a root of f. 

This completes the proof. 

 

illustration of  idea  behind  gauss’s  proof in reference to 
Figure 3::  
 

 Consider separately the points where the real part of f(z) is 0 and the points 

where the imaginary part is 0. 

 

 Now, a complex number whose imaginary part is 0 is just a real number, and in 

Figure 1 we can see that the color assigned to a real number is either some 

shade of red (if the number is positive) or some shade of cyan (if it is negative). 

 

 

 

 

 



    Similarly, complex numbers whose real part is 0 are those whose 

color is 

   some shade of either yellow-green or magenta-blue. 

 

  Figure 4 is a copy of Figure 3 in which all of these points have been 

marked. The red curves in Figure 4 are the points where the real 

part of f(z) is 0, and the green curves are the points where the 

imaginary part is 0. 

 

  As we observed earlier, going around the border of Figure 3, the 

color wheel cycle of colors is repeated eight times. Each cycle includes 

all four of the colors red, yellow-green, cyan, and magenta blue, in 

order, and so along the border of Figure 4 there are 32 ends of curves, 

alternating red and green. 

 

 If we start at any one of these curve ends and follow the curve into 

the picture, we will emerge at another curve end of the same color. 

 

 As the colors of the curve ends around the border of the picture 

alternate between red and green so somewhere in the picture a red and 

green curve must intersect. This intersection point will be a point 

where the real and imaginary parts of f(z) are both 0; in other words, it 

will be a root of f.  

 

 In Figure 4, we see that the red and green curves intersect at all six 

of the roots of f. 
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Thank You 


