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1. Introduction

A patient goes to a dentist with a bad toothache, and the first thing she does is to inject some anaesthetic
into the patient’s gums. Then she pulls out the wisdom tooth, which was causing the pain. Imagine what
would happen if the order of the dentist’s actions was reversed: first, the tooth is extracted, and then the
anaesthetic is given. The patient’s experience would be very different! We students of mathematics would
say: the two operations do not commute. The question of commutativity is as important in mathematics as
it is in the real world. Given a binary operation X ×X → Y on a set X with values in Y , the first question
to ask about it is whether it is commutative (if further Y = X, the next question should be whether the
operation is associative.)

The common binary operations in mathematics fall roughly in three classes. First the commutative ones:
union and intersection of sets, sum and product of numbers, the sum of vectors, the dot product of vectors,
construction of the straight line through two given points on the plane, and so on. The second class consists
of operations which are not commutative, but still the role of the two inputs of the binary operation are
equivalent, and there are interesting situations when the binary operation fails to commute: multiplication of
square matrices, the cross product of vectors, the composition of functions (from a set X to itself) being the
typical ones. Finally, operations of the third type are very highly non-commutative: subtraction, division,
construction of the circle with centre at one point and passing through another are examples of this third
type. In these, the two objects play different roles in the operation, and the operation commutes only in
trivial situations or never at all. For a phenomenon which is commutative in nature, we can fruitfully ask:
does it have a non-commutative analogue? This question often leads to interesting results and investigations.
In non-commutative situations of the second type described above, it often makes sense to ask : what is
the degree of non-commutativity of this operation? Is it possible to quantify in a precise way the deviation
from commutativity? In this note, we would like to show how these questions are answered in three concrete
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situations. This will lead us to a short tour of some pieces of mathematics where commutativity plays a
role, relate some interesting facts about them, have some fun, and leave the interested reader with further
questions.

2. The Quaternions

Our first example is a non-commutative analogue of the most important notion of mathematics: Number.
Through the ages, the notion of number has been successively refined and extended: starting from the
positive integers, then to integers (positive and negative), then to rationals, and then to the real numbers,
and finally by the nineteenth century, the complex numbers. Algebraically, the complex numbers C form
a field, but it is also a real vector space of dimension 2. Denoting the natural basis of R2 as 1 = (1, 0)
and i = (0, 1), and tolerating a little abuse of notation (the symbol 1 has two meanings now!), we can
represent a complex number z as z = x · 1 + y · i. This allows us to visualize the complex number z as
the point (x, y) in R2. The multiplication in C is completely known as soon as you know that i2 = −1.
One can easily check that the multiplication so defined turns the vector space R2 into a field. One can
ask: are there non-commutative generalizations of the complex numbers? We make this vague question
precise in the following way. A vector space V over R is said to be an R-algebra, if we are also given a
“multiplication” V × V → V . All we need from the multiplication is that it is linear in each factor – for
x, y, x′, y′ in V and real numbers a, b, a′, b′ the product (ax + by)(a′x′ + b′y′) is exactly what it should be:
(aa′)(xx′) + (ab′)(xy′) + (ba′)(yx′) + (bb′)(yy′). Note that in a general R-algebra it is not assumed that the
multiplication is either commutative or associative. An R-algebra is called a division algebra over R if further
the set V \{0} of nonzero vectors in V is a group under the multiplication operation, and the product of any
element of V with 0 is 0. We denote the identity element of the group V \ {0} by 1, again allowing ourselves
abuse of notation. Note that elements of V of the form a.1 where a ∈ R form a copy of R within V , so that V
can be thought of containing R, and therefore a generalization of real numbers. Clearly, R and C are division
algebras over R. The vector space of 2×2 matrices over R is an R-algebra under the standard multiplication,
though it is not a division algebra, as there are nonzero matrices with no inverse. We can now make precise
the question posed in the beginning of this paragraph: are there any other division algebras over R except
our old friends R and C? This question was answered by the great Irish mathematician Sir William Rowan
Hamilton (1805–1865) . His initial motivation was geometric: just as in the complex plane, rotations about
the origin are represented by multiplication by complex numbers of unit modulus, is it possible to represent
three-dimensional rotations by means of some multiplicative structure defined on R3? Hamilton tried in vain
to construct such a product operation on R3. Each morning at breakfast, his sons Archibald and William
Edward would ask him, “Well Papa, can you multiply triples?”, to which he answered, “No, I can only add
and subtract them.”

Then on 16th October 1843, as he was taking a stroll with his wife on the Brougham Bridge on the Royal
Canal in Dublin, Sir William had a moment of inspiration: he needed to modify his question in order to
answer it! First, the product would be defined in R4 rather that R3, and second : the product would not
commute. He called his new four-dimensional numbers quaternions. The set H of quaternions is just the
vector space R4 with a product structure, defined in terms of the standard basis elements 1 = (1, 0, 0, 0), i =
(0, 1, 0, 0), j = (0, 0, 1, 0) and k = (0, 0, 0, 1) by the rules i2 = j2 = k2 = −1 and ij = k, jk = i, ki = j.
Hamilton immediately inscribed these equations on a stone on the Brougham Bridge. These relations suffice
to find any other product by associativity, e.g. ji = (ki)i = k(i2) = k(−1) = −k, which already shows that
the multiplication on H is not commutative. One can check that with this product structure, the vector
space H is a four-dimensional division algebra over R. What is more remarkable, H also contains C inside
it: for example look at quaternions of the form a · 1 + b · i, where a, b ∈ R (the interested reader is invited
to find infinitely many other copies of C inside H!)

Many properties of the complex numbers generalize to the quaternions. For example, if x, y are quater-
nions, we have |xy| = |x| |y|, where |·| denotes the length of a vector in R4 in the euclidean norm. We write a
general quaternion as x = x0 + x1i+ x2j + x3k. Note the abuse of notation (similar to C) by which we have
written x0 · 1 as x0, identifying the quaternion x0 · 1 + 0 · i+ 0 · j + 0 · k with the real number x0. We define
x = x0− (x1i+x2j+x3k) (the quaternionic conjugate of x), and then in analogy with the complex numbers

we have the relation xx = |x|2, and the multiplicative inverse is given by x−1 = |x|−2 x. It follows that if u
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is a fixed quaternion, and we identify the point x = (x1, x2, x3) with the quaternion x1i + x2j + x3k, then
x 7→ uxu−1 defines a rotation of R3, and in fact each orientation-preserving rotation of R3 is of this form,
thus solving the original problem of Hamilton of representing three dimensional rotations algebraically. The
reader who is not familiar with quaternions is invited to try to prove some of the statements made in this
paragraph! When they were introduced, Quaternions represented a revolutionary advance in mathematics.
Here was a new system of numbers, in which the product of two things depended on the order of multipli-
cation, yet with properties very similar to those the complex numbers. Quaternions opened the way to the
study of abstract algebraic systems for their own sake. But then, can one go further? This was answered in
1877 by the a theorem of the German mathematician Ferdinand Georg Frobenius (1849 - 1917): there are
only three division algebras over R, which are R, C and H. On the other hand, one can go further, if one is
ready to drop the assumption of associativity on the multiplication operation: but this essay is about the
commutative property!

Some other important properties of complex numbers do not generalize to the quaternions. For example,
the fundamental theorem of algebra (that a polynomial of degree n has exactly n roots) is no longer valid:
the polynomial z2 + 1 has infinitely many roots in H including ±i,±j and ±k. It is an interesting exercise
to find all roots! A more serious failure is that the elegant methods and results of complex analysis (theory
of analytic functions of a complex variable) have no direct quaternionic analogues.

3. Group Theory

Recall that a commutative group is also called abelian, after the Norwegian mathematician Neils Henrik
Abel (1802 –1829.) Many important groups are nonabelian. An interesting example (related to the quater-
nions!) is the group of rotations of a rigid body in three dimensional space. Choose two straight lines in
space intersecting at right angles, and call them x- and y axes. Denote by X the operation of rotating a
body through a right angle about the x-axis, and by Y the operation of rotating it through a right angle
about the y-axis. It is not difficult to see that XY 6= Y X. The reader is urged to stop reading this article,
close this copy of Craze@Math, and after mentally choosing the x and y-axes passing through the book and
intersecting at a point inside it, perform the operations X and then Y to obtain the action of Y X. Again
going back to the initial position one can perform Y first and X next in order to obtain XY , and check that
the end results are different. For a group G, is there a way of understanding how much it deviates from being
abelian? Trying to answer this question leads to some important constructions in Group Theory. Given two
elements g, h in a group g, denote by [g, h] the element ghg−1h−1 of G, called the commutator of g and h.
Then [g, h] is the identity if and only if g and h commute. In general, product of two commutators is not
a commutator, but the set of all commutators generate a subgroup of G called the commutator subgroup of
G, denoted by [G,G]. Then [G,G] measures the lack of commutativity of the group G : [G,G] is large for
those groups G which are less commutative, and for abelian groups [G,G] is the trivial subgroup {e}. If
[G,G] = G, we may think of G as a hardcore nonabelian group, with no abelian part at all: it is known as
a perfect group. An example of a perfect group is the group A5 of even permutation of 5 symbols, which
is a finite group of order 60. The reader is invited to prove that A5 is perfect (hint: show first that the
commutator subgroup is normal!)

What about groups which are neither abelian, nor perfect? Then [G,G] is a non-trivial proper subgroup
of G. We can then define a series of subgroups of G by setting G(1) = [G,G], and G(i+1) = [G(i), G(i)]. The
series G ⊃ G(1) ⊃ G(2) ⊃ · · · is called the derived series of the group G. Three things can happen to it: first,
some G(k) may happen to be a non-trivial perfect group, so that the series stops producing new subgroups
after k terms and all further terms are equal to G(k). For such groups, the two data – the number of terms
k, and the last term G(k) of the derived series is a measure of the degree of nonabelianness of G. Smaller
the k and larger the group G(k), more nonabelian is the group G. Second, it is possible that some G(k)

is the identity subgroup. In this case, we call the group G solvable, and we can think of G as an “almost
abelian ” group. Finally, if G is infinite, it is possible that the series goes on infinitely, producing smaller and
smaller groups G(i), but never comes to an end. Unfortunately, we do not have space here to discuss this
very interesting case. The derived series therefore gives us a way of studying the degree of commutativity
of groups, and it has very important applications, for example in the theory of Lie groups, which are groups
on which one can define smooth functions and take derivatives. An example of a Lie group is the Special
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Linear group SL(n,R) of n×n matrices with determinant equal to one. We cannot leave this topic without
mentioning the origin of the word solvable used above for groups for which G(k) = {e} for some k. The

roots of the the quadratic equation ax2 + bx+ c = 0 are given by the explicit formula 1
2a

(
−b±

√
b2 − 4ac

)
.

There are similar formulas for the roots of cubic and fourth-degree equations. Suppose that we want to
study a polynomial p of degree n with rational coefficients, and ask: whether its roots can be represented
by formulas analogous to the quadratic formula, i.e., whether the equation p = 0 is solvable by radicals. To
study this question, we introduce a finite group associated with the equation and called the Galois Group
of the equation (see any algebra book, e.g. [2] for the definition.) It was discovered by the great French

mathematician Éveriste Galois (1811–1832) that a polynomial is solvable by radicals if and only if its Galois
group is solvable ! In particular, there are equations of degree five and higher whose Galois groups are not
solvable, and this shows the existence of polynomial equations which are not solvable by radicals. Thus
commutativity lies at the centre of the puzzle of solving polynomial equations by radicals. Galois died in
a gun-fight duel over a triangular love-affair at the age of 20. But he was wise enough to make himself
immortal before foolishly laying down his life.

4. Differential Calculus

Let Ω be an open set in Rn, and let C∞(Ω) be the infinitely many times differentiable real-valued functions
on Ω. For 1 ≤ j ≤ n, denote by ∂j the operator from C∞(Ω) to itself which takes the partial derivative of a

function with respect to the j-th variable: ∂jf =
∂f

∂xj
, where (x1, . . . , xn) denote the natural coordinates of

Rn. It is well-known that for f ∈ C∞(Ω) we have ∂i∂jf = ∂j∂if, a fact which is referred to as the equality of
mixed partials. Another way of saying this is that the operators ∂i and ∂j commute under composition. If
we allow the differentiation of less smooth functions, equality of mixed partials need not hold. A sufficient
condition for equality of mixed partials is that all second partial derivatives of the function exist and are
continuous. If the function f : R2 → R is given by

f(x1, x2) =


x1x2(x21 − x22)

x21 + x22
if x 6= 0

0 if x = 0

,

which does not satisfy the sufficient condition stated above, we leave it to the interested reader to check
that both ∂1∂2f(0) and ∂2∂1f(0) exist but are not equal. But we are not interested in this kind of non-
commutativity, which is the result of a bad choice of f . We would like to continue to think of the ∂j as
acting on C∞(Ω), but we want to generalize the notion of partial derivative, and ask, whether for such
generalized partial derivatives, we still have commutativity. There is nothing special about the use of
cartesian coordinates on Ω as far as partial derivatives are concerned. For example, if Ω = R2 \ {0}, we use
polar coordinates (r, θ), which are related to the Cartesian coordinates (x1, x2) by x1 = r cos θ, x2 = r sin θ.
A computation using the chain rule in several variables shows that for a smooth f ∈ C∞(Ω) we have

∂f

∂r
= cos θ · ∂1f + sin θ · ∂2f, and

∂f

∂θ
= −r sin θ · ∂1f + r cos θ · ∂2f.

This suggests that as a generalization of the notion of partial derivative, we can consider operators X :
C∞(Ω) → C∞(Ω) of the type Xf =

∑n
j=1 aj · ∂jf, where aj ∈ C∞(Ω). Such an operator X is known as

either a first order linear homogeneous partial differential operator or a smooth vector field. The second
name comes from identifying X with the smooth vector valued function (a1, . . . , an) on Ω. The partial

derivative operators ∂j =
∂

∂xj
, the radial derivative operator

∂

∂r
and the angular derivative operator

∂

∂θ
are all examples of smooth vector fields. Let X(Ω) denote the space of smooth vector fields on an open set
Ω. We can add any two elements of X(Ω): set (X + Y )f = Xf + Y f , and given a ∈ C∞(Ω), we can define
aX by (aX)f = a(Xf). Given two smooth vector fields X,Y ∈ X(Ω), the composition X ◦ Y is defined
as a mapping from C∞(Ω) to itself: (X ◦ Y )f = X(Y f). But X ◦ Y is not a smooth vector field, since a
computation shows that it is a linear partial differential operator of the second order: if X =

∑n
j=1 aj∂j and
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Y =
∑n
k=1 bk∂k, we have for f ∈ C∞(Ω) that

X(Y f) =

n∑
j,k=1

ajbk∂j∂kf +

n∑
j,k=1

aj∂jbk∂kf.

It is clear that in general X(Y f) 6= Y (Xf), since the first order terms do not match (though, thanks
to equality of mixed partials, the second order terms are the same!) We can measure the deviation from
commutativity by constructing the Lie bracket [X,Y ] : C∞(Ω) → C∞(Ω) defined as [X,Y ]f = X(Y f) −
Y (Xf). But wait, the second order terms in X(Y f) and Y (Xf) are the same, and therefore, [X,Y ] only
involves first order derivatives, and is actually a vector field! A calculation shows that [X,Y ] =

∑n
k=1 ck∂k,

where ck =
∑n
j=1 (aj∂jbk − bj∂jak). It is clear that on Rn, we have [∂j , ∂k] = 0 for each j, k and on R2 \ {0}

were (r, θ) are coordinates, we have
[
∂
∂r ,

∂
∂θ

]
= 0.

We can generalize from the polar coordinates to arbitrary curvilinear coordinates (y1, . . . , yn) on
an open set Ω. Examples of such curvilinear coordinate systems in three dimensions include the spherical
and cylindrical coordinate system. By definition, the coordinates y1, . . . , yn are smooth functions on Ω, such
that, the map y : Ω → Rn given by y = (y1, . . . , yn) is a smooth one-to-one onto map from Ω to an open
set U ⊂ Rn, and the inverse y−1 : U → Ω is also a smooth map, i.e., its components are smooth. It follows
that a tuple (y1, . . . , yn) ∈ U uniquely determines a point in Ω and therefore, we can use (y1, . . . , yn) as
a new coordinate system. on Ω. Corresponding to this coordinate system, we have the partial differential

operators (or smooth vector fields)
∂

∂yj
, 1 ≤ j ≤ n. The vector fields

∂

∂yj
are called the coordinate vector

fields corresponding to the coordinate system (y1, . . . , yn). Note that the coordinate vector fields are linearly

independent, since if Z =

n∑
j=1

aj
∂

∂yj
is a linear combination of the coordinate vector fields with smooth

functions aj ∈ C∞(Ω) as coefficients, we have for each k that Zyk = ak, and therefore Z is the zero vector
field only if each ak vanishes identically on Ω. Furthermore, since any smooth function may on Ω can be

represented as a function of the variables (y1, . . . , yn), it follows that

[
∂

∂yj
,
∂

∂yj

]
is identically zero, i.e., the

coordinate vector fields commute.
We now come to the last example of commutativity in action in mathematics. Suppose that we are given

n smooth vector fields Y1, . . . , Yn on an open set Ω ⊂ Rn. We can ask whether it is possible to have a

curvilinear coordinate system y1, . . . , yn on Ω, such that Yj =
∂

∂yj
, the j-th coordinate vector field. We

already have stated some necessary conditions, and it turns out they they are also sufficient, at least locally:
if Y1, . . . , Yn are linearly independent, and [Yj , Yk] = 0 for each j and k, then for each point p in Ω there is
a curvilinear coordinate system on a neighbourgood ω of p such that on ω the Yj are the coordinate vector
fields of this curvilinear coordinate system.

It turns out that the commutativity of families of vector fields (or more generally, the algebraic properties
of their Lie brackets) is absolutely crucial in the applications of the differential calculus to geometry. Further
study of this topic leads to a famous theorem called Frobenius Theorem (this is the same Frobenius whom
we met in Section 2.) One can study more about this topic from the excellent text [3].

5. Conclusion

We have seen how commutativity and non-commutativity are important concepts in many parts of math-
ematics. Unfortunately, there is no space here to discuss many other interesting phenomena where this
notion plays a crucial role: the notion of curvature in Riemannian geometry, the mathematical foundations
of Quantum Mechanics, the notion of non-commutative geometry introduced by the great contemporary
mathematician Alain Connes (born 1947, Fields Medal 1982.) If we have been able to arouse the curiosity
of the reader, then our goal is fulfilled! For such a reader, we recommend the books [1,2,3] as references on
the three topics discussed above.
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