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1. Introduction and Motivation

What is a tensor? How the concept of tensor comes to be a part of mathematics? Why we need to

study the tensor algebra? What is the physical motivation? Well, being frequent to all, although this

should not be an ideal starter, but situation demands the answers. The first question could hardly be

more straightforward, and yet I have been woefully unsuccessful at providing anything resembling a

satisfactory answer. Even a partial answer that elicited a follow-up question would rate as a success, but

this is rare, especially so in mixed company at cocktail parties. Why is it that the simplest questions

are so often the hardest to answer? This note explains my current thoughts on the topic, and may serve

as a guide should someone be foolish enough to raise the question at a future occasion.

As every successful politician knows, the essential first step in answering any difficult question is to ‘re-

phrase the question’. This can mean anything from ‘the question I think was intended’ to ‘the question
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I know how to answer’ to ‘the question I want to be asked’. Even a straightforward question, such as

‘what is a tensor?’ is suspectible to this ploy. Here are some re-phrased versions of the question, roughly

increasing order of difficulty:

1. What is the mathematical definition of a tensor?

2. Is a tensor a kind of a vector?

3. Is a vector a kind of a tensor?

4. Is a matrix a special kind of a tensor?

5. When you write λi, do you mean a row vector or a column vector?

6. What are tensors used for?

7. I know that a vector has magnitude and direction, but what does a tensor look like?

The first of these questions is easily disposed of by the stock answer, courtesy of vector spaces, ‘a

tensor is an element of a tensor space’. The second and third questions are answered in a single word,

‘yes’. Question 4 is only slightly more difficult, the answer being ‘yes and no’. Question 5 deals with

typographical strategy: it all depends on whether the elements are written across the page, down the

page, or diagonally.

Audiences are invariably nonplussed by the directness and simplicity of these answers. The obvious

correctness of the answer to the question 1 is eloquent testimony to the persuasive power of modern

mathematics. What more is there to say?

Regarding question 7, one could preface a reply by stating that vectors need have neither magnitude

nor direction, and the same is true for tensors. But that, I suspect, is more likely to confuse than to

enlighten.

Well, now come to the second and third question of the begining, i.e., How the concept of tensor comes to

be a part of mathematics? Why we need to study the tensor algebra? A simple answer to these questions

seems like as follows.

Tensors are a generalisation of vectors. We think informally of a tensor as something which, like a vector,

can be measured component-wise in any Cartesian frame; and which also has a physical significance

independent of the frame, like a vector.

Regarding the physical motivation, we will try to give a suitable answer later on in the next section.

More information regarding tensors can be obtained in [1] or [2].
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2. Technical details

Here, in this section, we will try to give the formal definition of a tensor, alongwith its types, rank,

properties etc. But, as we have already mention that tensors are a generalisation of vectors, so before

proceeding towards the main goal, we try to give a very brief idea about the vectors.

2.1. Vectors

A vector is more than just 3 real numbers. It is also a physical entity: if we know its 3 components

with respect to one set of Cartesian axes then we know its components with respect to any other set of

Cartesian axes. (The vector stays the same even if its components do not).

For example, suppose that {e1, e2, e3} is a right-handed orthogonal set of unit vectors, and that a vector

v has components vi relative to axes along those vectors. That is to say,

v = v1e1 + v2e2 + v3e3 = vjej .

What are the components of v with respect to axes which have been rotated to align with a different

set of unit vectors {e′1, e′2, e′3}? Let

v = v′1e
′
1 + v′2e

′
2 + v′3e

′
3 = v′je

′
j .

Now, e′i.e
′
j = δij , so

v.e′i = v′je
′
j .e
′
i = v′jδij = v′i

but also

v.e′i = vjej .e
′
i = vj lij

where we define the matrix L = (lij) by

lij = e′i.ej .

Then

v′i = lijvj .

(or, in matrix notation, v′ = Lv where v′ is the column vector with components v′i ). L is called the

rotation matrix or transformation matrix.
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Note 2.1.
This looks like, but is not quite the same as, rotating the vector v round to a different vector v using a
transformation matrix L. In the present case, v and v′ are the same vector, just measured with respect
to different axes. The transformation matrix corresponding to the rotation {e1, e2, e3} 7→ {e′1, e′2, e′3} is
not L (in fact it is L−1 ).

Now, we are in a position to enter into our main objective, i.e., Tensor.

2.2. Tensors

Tensors are nothing but the mathematical objects, which transforms like a coordinate transformation.

Now, its time to elaborate what is the physical motivation of a tensor.

2.2.1. Physical Motivation

We know that the conductivity law, J = σE, where E is the applied electric field and J is the resulting

electric current. This is suitable for simple isotropic media, where the conductivity is the same in all

directions. But a matrix formulation may be more suitable in anisotropic media; for example,

J =


5 0 0

0 4 0

0 0 0

E

might represent a medium in which the conductivity is high in the x-direction but in which no current

at all can flow in the z-direction. (For instance, a crystalline lattice structure where vertical layers are

electrically insulated). More generally, in suffix notation we have Ji = σijEj , where σ is the conductivity

tensor.

What happens if we measure J and E with respect to a different set of axes? We would expect the

matrix σ to change too: let its new components be σij . Then J ′i = σ′ijE
′
j . But J and E are vectors, so

J ′i = lijJj and Ei = ljiE
′
j from the results regarding the transformation of vectors in §2.1. Hence,

σ′ijE
′
j = J ′i

= lipJp

= lipσpqEq

= lipσpqljqE
′
j

⇒ (σ′ij − lipljqσpq)E′j = 0.
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This is true ∀ vectors E′, and hence the bracket must be identically zero; hence σ′ij = lipljqσpq . This

tells us how σ transforms. Here σ is a second rank tensor, because it has two suffixes (σij ).

2.2.2. Definition of Tensor

Definition 2.1.
In general, a tensor of rank n is a mathematical object with n suffixes, Ti1i2...in , which obeys the
transformation law

T ′i1i2...in = li1p1 li2p2 ...linpnTi1i2...in

where L is the rotation matrix between frames.

The above definition can be given alternatively as follows.

Definition 2.2.
A tensor of rank n is a mathematical object with n suffixes, Tα1α2...αn , which follows the transformation
law

T ′α1α2...αn =
∂xµ1

∂x′α1

∂xµ2

∂x′α2
· · · ∂x

µn

∂x′αn
Tµ1µ2...µn

where ∂xµ1

∂x′α1

∂xµ2

∂x′α2
· · · ∂x

µn

∂x′αn is called the transformation machinary.

For example, a second rank tensor with free indices α, β is given by the following transformation law

T ′αβ =
∂xµ

∂x′α
∂xν

∂x′β
Tµν .

2.2.3. Types of Tensor

There are three types of tensors, viz. Contravariant Tensors, Covariant Tensors and Mixed Tensors.

(i) Contravariant Tensors: A contravariant tensor of rank n with free indices α1, α2, . . . , αn follows

the following transformation law

T ′α1α2...αn =
∂x′α1

∂xµ1

∂x′α2

∂xµ2
· · · ∂x

′αn

∂xµn
Tµ1µ2...µn

where ∂x′α1

∂xµ1
∂x′α2

∂xµ2
· · · ∂x

′αn
∂xµn

is the transformation machinary.

(ii) Covariant Tensors: A covariant tensor of rank n with free indices α1, α2, . . . , αn follows the fol-

lowing transformation law

T ′α1α2...αn =
∂xµ1

∂x′α1

∂xµ2

∂x′α2
· · · ∂x

µn

∂x′αn
Tµ1µ2...µn

where ∂xµ1

∂x′α1

∂xµ2

∂x′α2
· · · ∂x

µn

∂x′αn is the transformation machinary.
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(iii) Mixed Tensors: A mixed tensor of rank n with contravariant free indices α1, α2, . . . , αi and covari-

ant free indices β1, β2, . . . , βj , with i+ j = n follows the following transformation law

T ′α1α2...αi
β1β2...βj

=
∂x′α1

∂xµ1

∂x′α2

∂xµ2
· · · ∂x

′αi

∂xµi
∂xν1

∂x′β1
∂xν2

∂x′β2
· · · ∂x

νj

∂x′βj
Tµ1µ2...µi
ν1ν2...νj

where ∂x′α1

∂xµ1
∂x′α2

∂xµ2
· · · ∂x

′αi
∂xµi

∂xν1

∂x′β1
∂xν2

∂x′β2
· · · ∂x

νj

∂x
′βj is the transformation machinary.

2.2.4. Examples of Tensor

Here we put some example of tensors in order to illustrate the above definition.

Example 2.1.
Any scalar is a tensor of rank 0. For example, temperature T is a scalar quantity, because it is the same
in all frames (T ′ = T ). So it is a tensor of rank 0.

Example 2.2.
Any vector is a tensor of rank 1, follows the following transformation law,

T ′α =
∂x′α

∂xβ
T β .

Example 2.3.
Any matrix is a tensor of rank 2, follows the following transformation law,

T ′αβ =
∂x′α

∂xµ
∂x′β

∂xν
Tµν .

2.3. Special Tensors

2.3.1. The Inertia Tensor

Consider a mass m which is part of a rigid body, at a location x within the body. If the body is rotating

with angular velocity ω then the masss velocity is v = ω × x, and its angular momentum is therefore

mx× v = mx× (ω × x) = m(|x|2ω − (ω.x)x).

Changing from a single mass m to a continuous mass distribution with density ρ(x), so that an in-

finitesimal mass element is ρ(x)dV , we see that the total angular momentum of a rigid body V is given

by

h =

∫∫∫
V

ρ(x)(|x|2ω − (ω.x)x)dV,
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or, in suffix notation,

hi =

∫∫∫
V

ρ(x)(xkxkωi − ωjxjxi)dV

=

∫∫∫
V

ρ(x)(xkxkδij − xjxi)ωjdV

= Iijωj ,

where

Iij =

∫∫∫
V

ρ(x)(xkxkδij − xixj)dV

is the inertia tensor of the rigid body. Note that the tensor I does not depend on ω, only on properties

of the body itself; so it may be calculated once and for all for any given body. To see that it is indeed

a tensor, note that both h and ω are vectors, and apply arguments previously used for the conductivity

tensor.

2.3.2. Susceptibility χ

If M is the magnetization (magnetic moment per unit volume) and B is the applied magnetic field, then

for a simple medium, we have M = χ(m)B, where χ(m) is the magnetic susceptibility. This generalises

to Mi = χ
(m)
ij Bj , where χ

(m)
ij is the magnetic susceptibility tensor. Similarly for polarization density P

in a dielectric: Pi = χ
(e)
ij Ej , where E is the electric field and χ

(e)
ij is the electric susceptibility tensor.

2.3.3. The Kronecker Delta

The Kronecker delta is defined as,

δij =

 1, if i = j

0, if i 6= j

In n dimensional space, we have δii = δ11 + δ22 + · · ·+ δnn = n. Again, we have

∂xi

∂xj
=

 1, if i = j

0, if i 6= j

Thus, we see that the Kronecker delta also can be defined as

δij =
∂xi

∂xj
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Similarly, we have

∂x′i

∂x′j
=

 1, if i = j

0, if i 6= j

and so

δij =
∂x′i

∂x′j

From above, it is clear that the Kronecker delta is defined in same coordinate system and it is same in

all frames (δ′ij ≡ δij).

Remark 2.1.
When we are defining in different coordinate system, then it is said to be transformation machinary,
e.g.,

T ′αβ =
∂x′α

∂xµ
∂x′β

∂xν
Tµν .

2.3.4. Levi-Civita Symbol

Definition 2.3.
In 3 dimensional space, the Levi-Civita symbol is defined as follows,

εijk =


1, if i, j, k are cyclic
−1, if i, j, k are anticyclic
0, if any of i, j, k coincides.

For example, ε123 = 1, ε132 = −1, ε312 = 1, ε213 = −1, ε112 = 0, ε121 = 0, ε133 = 0. We have

ε1jkA
jBk = ε1j1A

jB1 + ε1j2A
jB2 + ε1j3A

jB3

= ε111A
1B1 + ε121A

2B1 + ε131A
3B1 + ε112A

1B2 + ε122A
2B2

+ ε132A
3B2 + ε113A

1B3 + ε123A
2B3 + ε133A

3B3

= A2B3 −A3B2

which is nothing but the 1st component of curl of
−→
A and

−→
B. Similarly, we have ε2jkA

jBk = A3B1−A1B3,

which is the 2nd component of curl of
−→
A and

−→
B and ε3jkA

jBk = A1B2 − A2B1, which is the 3rd

component of curl of
−→
A and

−→
B.

Remark 2.2.
Thus we see that in 3 dimensional space, εijkA

jBk gives us the ith component of curl of
−→
A and

−→
B.
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Definition 2.4.
The Levi-Civita symbol, in 4 dimensional space, is defined as follows,

εijkl =


1, if (i, j, k, l) is an even permutation of (1, 2, 3, 4)
−1, if (i, j, k, l) is an odd permutation of (1, 2, 3, 4)
0, if any of i, j, k or l coincides.

Definition 2.5.
In n dimension, the definition looks like as follows,

εa1a2...an =


1, if (a1, a2, . . . , an) is an even permutation of (1, 2, 3, . . . , n)
−1, if a1, a2, . . . , an is an odd permutation of (1, 2, 3, . . . , n)
0, if any of a1, a2, . . . , an coincides.

2.3.5. The Null Tensor

A null tensor is a tensor where all the entries are zero. For example, null tensor of rank 1 are those,

where all the entries A1, A2, A3, . . . are zero.

2.3.6. The Stress and Strain Tensors

In an elastic body, stresses (forces) produce displacements of small volume elements within the body.

Let this displacement at a location x be u; then the strain tensor is defined to be

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The stress tensor pij is defined as the jth component of the forces within the body acting on an imaginary

plane perpendicular to the ith axis. Hookes law for simple media says that stress ∝ strain. We can now

generalise this to the tensor formulation

pij = kijklekl

where kijkl is a fourth rank tensor, which expresses the linear (but possibly anisotropic) relationship

between p and e.

2.3.7. The Metric Tensor

We know that the line element can be defined as follows

ds2 = gµνdx
µdxν ,

where gµν is called the metric tensor. Clearly gµν is symmetric. Thus, we have the following definition.
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Definition 2.6.
A metric tensor is a second rank covariant symmetric tensor which descrives the nature of the curved
space. This space is known as Riemannian space. In other sense, metric tensor is a tensor which is
defined in Riemannian space.

2.4. Properties of Tensors

2.4.1. Linear Combination of Tensors

If Aij and Bij are second rank tensors, and α, β are scalars, then Cij = αAij + βBij is also a tensor of

second rank.

Proof. We know that,

C′ij = α′A′ij + β′B′ij

= α
∂xm

∂x′i
∂xn

∂x′j
Amn + β

∂xm

∂x′i
∂xn

∂x′j
Bmn

=
∂xm

∂x′i
∂xn

∂x′j
(αAmn + βBmn)

=
∂xm

∂x′i
∂xn

∂x′j
Cmn

as required.

This result clearly extends to tensors of rank n.

2.4.2. Symmetric and Anti-Symmetric Tensors

A tensor Tijk... is said to be symmetric in a pair of indices (say i, j) if

Tijk... = Tjik...

and anti-symmetric in i, j if

Tijk... = −Tjik...

For a second rank tensor we need not specify the indices as there are only two to choose from! For

example, δij is symmetric; εijk is anti-symmetric in any pair of indices.

Note 2.2.
Symmetricity is defined explicitely with respect to either covariant indices or contravariant indices.
Symmetricity is not defined with respect to mixed indices. If a tensor is symmetric with respect to all
indices, then the tensor is said to be tensor or fully tensor, otherwise we say symmetric with respect to
some indices.
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Remark 2.3.
If Aij is a symmetric second rank tensor then the matrix corresponding to A is symmetric, i.e., A = AT

. Similarly for an anti-symmetric tensor.

Some important properties of tensors regarding symmetricity and antisymmetricity are the following:

(i) Suppose that Sij is a symmetric tensor and Aij an anti-symmetric tensor. Then SijAij = 0.

Proof. We have

SijAij = −SijAji = −SjiAji = −SijAij (swapping dummy i and j)

⇒ 2SijAij = 0,

as required.

(ii) Symmetricity is preserved under general coordinate transformation.

Proof. Let Aij be a second rank contravariant tensor, and symmetric, i.e,

A′αβ =
∂x′α

∂xi
∂x′β

∂xj
Aij

and Aij = Aji. Now

A′βα =
∂x′β

∂xm
∂x′α

∂xn
Amn

Let us change m to j and n to i, then we have

A′βα =
∂x′β

∂xj
∂x′α

∂xi
Aji

=
∂x′α

∂xi
∂x′β

∂xj
Aij

= A′αβ

Therefore, symmetricity is preserved under coordinate transformation.

(iii) Anti-symmetricity is also preserved under general coordinate transformation.
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Proof. Let Aij be a second rank contravariant tensor, and anti-symmetric, i.e,

A′αβ =
∂x′α

∂xi
∂x′β

∂xj
Aij

and Aij = −Aji. Now

A′βα =
∂x′β

∂xm
∂x′α

∂xn
Amn

Let us change m to j and n to i, then we have

A′βα =
∂x′β

∂xj
∂x′α

∂xi
Aji

= −∂x
′α

∂xi
∂x′β

∂xj
Aij

= −A′αβ

Therefore, anti-symmetricity is also preserved under coordinate transformation.

2.4.3. Covariant Metric Tensor

The quantities gik transform as a covariant tensor of rank 21.

Proof. We have

ds2 = gµνdx
µdxν

= gµν

(
∂xµ

∂x′α
dx′α

)(
∂xν

∂x′β
dx′β

)
=

(
gµν

∂xµ

∂x′α
∂xν

∂x′β

)
dx′αdx′β

= g′αβdx
′αdx′β

where

g′αβ =
∂xµ

∂x′α
∂xν

∂x′β
gµν ,

which is a covariant tensor of rank 2.

1 This result follows from the assumption that ds2 is invariant.
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3. Summary

Thus, from above discussion we have seen that how tensor plays an important role in physics as well

as in mathematics. We have also seen different types of tensors, some special tensors, their properties,

relevant proofs etc. We end this article here itself, with a note that the vectors and tensors described

here are definable in any coordinate frame. Thus, we are not restricted to inertial frames or to linear

transformations between such frames. Clearly this machinery will be useful to us in general relativity,

where physics and dynamics are described in any general reference frame. Interested readers may go

through it in details, if they want so, in any tensor calculus book, or in some relativity books.
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