
Multiplicity Free Restrictions of Symmetric Groups

Uday Bhaskar

March 12, 2014

Abstract

Using Gelfand’s lemmas, I will be showing that the restriction of an irreducible repre-
sentation of Sn, when restricted to Sn−1 is multiplicity free.

Introduction: Basics about Group Representation Theory

In this section, G denotes a finite group. I will mention a few definitions and the statement of
the main theorem.

Definition 0.1. Let G be a finite group and let V be a vector space over a field k(k could be a
finite field, R or C). Then a representation (V, σ) of G is defined as a homomorphism

σ : G→ GL(V )

where GL(V ) denotes the group of invertible linear maps on V .

Definition 0.2. Let (V, σ) be a representation of G. Let W be a subspace of V . We say that
W is a G-invariant subspace of (V, σ) if for any g ∈ G, and any w ∈ W , σ(g)(w) ∈ W . Hence
σ(g)|W is an ivertible linear map on W for all g ∈ G. Denoting σ(g)W by σW (g), we have a
representation (σW ,W ) of G and this is called a sub-representation of G.

Here is one theorem which is very useful:

Theorem 0.3. Maschke’s Theorem: Let (V, σ) be a representation of a group G. Let W be
a G-invariant subspace of W i.e., for any g ∈ G and any w ∈ W , we have σ(g)(w) ∈ W . Then
W has a G-invariant complement.

Its proof can be found in the book Linear Representations of Finite Groups written by J.
P. Serre.

Definition 0.4. :Invariant Vector: Let (V, σ) be a finite dimensional representation of a
finite group G. We say that a vector v is an Invariant Vector if σ(g)v = v for all g ∈ G.

The set V G of invariant vectors of V is a subspace of V .

Definition 0.5. Let (V, σ) be a representation of G. Suppose V =
⊕

ρ∈J mρWρ(where J ⊆ Ĝ)
is the decompostion of V in to a direct sum of irreducible representations (Wρ, ρ) of G. Then
the direct sum of the mρ copies of Wρ, mρWρ is called the ρ-Isotypic Component of (V, σ).
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Definition 0.6. Let (V, sigma) and (W, ρ) be representations of the group G. Then a linear
transformation T : V → W is called an intertwiner if T ◦ σ(g)(v) = ρ(g) ◦ T (v) for all v ∈ V
and for all g ∈ G.

Definition 0.7. :Commutant: Let (V, σ) be a representation of the group G. Then the space

HomG(V, V ) = {T : V → V | T is linear and T ◦ σ(g) = σ(g) ◦ T, ∀ g ∈ G}

is called the commutant of (V, σ).

We have a representation (V, σ) of group G and (V, σ) =
⊕

ρ∈J mρ(Wρ, ρ). The ρ-isotypic
component mρWρ is a direct sum of mρ orthogonal copies of Wρ.
We have the following lemma:

Lemma 0.8. The representation (σ, V ) of group G is multiplicity-free if and only if its com-
mutant HomG(V, V ) is a commutative algebra.

Proof. We already know that if (σ, V ) =
⊕

ρ∈J mρ(ρ,Wρ), where J ⊆ Ĝ, then HomG(V, V ) =⊕
ρ∈JM(mρ,C) with component wise multiplication.

Proof of ⇒ ) If (σ, V ) is multiplicity-free, then mρ = 1 for all ρ ∈ J . Thus, HomG(V, V ) =⊕
ρ∈J C, which clearly is a commutative algebra(with component-wise multiplication).

⇐ ): If HomG(V, V ) is a commutative algebra, then we have that
⊕

ρ∈JM(mρ,C) is a com-
mutatuve algebra. That means, for each ρ ∈ J , M(mρ,C) is commutative. But, the algebra
M(mρ,C) is commutative if and only if mρ = 1. Thus mρ = 1 for all ρ ∈ J . Thus (σ, V ) is
multiplicity free.

Let G be a finite group and let Ĝ denote the set of irreducible representations of G over C.
Given a finite dimensional representation (V, σ) of G, we can write (V, σ) =

⊕
ρ∈J mρWρ,

where J ⊆ Ĝ, by repeatedly applying Maschke’s Theorem. Here mρ is called the multiplicity
of the irreducible representation (ρ,Wρ).

Definition 0.9. We say that a representation (V, σ) is multiplicity free if in the direct sum
decomposition of (V, σ), the multiplicity mρ of each irreducible representation (ρ,Wρ) is 1.

Infact Maschke’s theorem ensures us that the (V, σ) is the direct sum of irreducible sub-
spaces, which are mutually orthogonal(with respect to the inner product).

We have an idea of what irreducible representations of the symmetric groups Sn are for
n = 3, 4, 5(from character theory). Using character theory, we can see that an irreducible
representation say ρ of S5 when restricted to S4 is a direct sum of inquivalent irreducible
representations of S4 i.e., each irreducible representation of S4 occurring in ρ|S4 , occurs exactly
once. Similarly for irreducible representations of S4 restricted to S3.
We cannot use this approach for Sn for n in general. Okounkov and Vershik’s approach using
Gelfand’s lemma was used in proving the following theorem:

Theorem 0.10. An irreducible representation Sn when restricted to Sn−1 for n ≥ 2, is multi-
plicity free.

In this talk, we shall use Gelfand’s lemma to prove the statement.
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1 Permutation Representations

Let G � X. Then consider L(X) = {f : X → C}. We know that this is a vector-space , with
the dirac functions, δx for x ∈ X forming its basis.

Definition 1.1. Define λ : G→ GL(L(X)) as λ(g)(f)(x) = f(g−1x) for all x ∈ X and for all
g ∈ G. This λ is a representation and this λ is called the Permutation Representation.

Consider G � X×X, with g.(x, y) := (gx, gy). Then we consider the algebra L(X×X) with

multiplication defined as F1.F2(x, y) =
∑
z∈X

F1(x, z)F2(z, y) for any F1, F2 ∈ L(X,X). Consider

the permutation representation of G on L(X ×X). Now we have an important lemma:

Lemma 1.2. HomG(L(X), L(X)) ∼= L(X ×X)G.

Proof. Define T : L(X ×X)→ Hom(L(X), L(X)) as

T (F )(f)(x) =
∑
y∈X

F (x, y)f(y)

Clearly this map is a linear map. Suppose T (F )(f) = 0 for all f ∈ L(X). Then T (F )(δy) = 0

for all y ∈ X. But T (F )(δy)(x) =
∑
z∈X

F (x, z)δy(z) = F (x, y). Thus F (x, y) = 0 for all x, y ∈ X.

Thus T is one-one and since dimL(X ×X) = |X|2 = dimHom(L(X), L(X)), we get that this
T is a bijection, therefore an isomorphism between L(X ×X)→ Hom(L(X), L(X)). Now we
define the same map on L(X ×X)G. So we need to check that T (F ) ∈ HomG(L(X), L(X)).

.

T (F ) ◦ λ(g)(f)(x) =
∑
y∈X

F (x, y)λ(g)f(y)

=
∑
y∈X

F (x, y)f(g−1y)

=
∑
y∈X

F (g−1x, g−1y)f(g−1y) ∵ F ∈ L(X ×X)G

=
∑
y∈X

F (g−1x, y)f(y)

= T (F )(f)(g−1x)

= [λ(g) ◦ T (F )(f)](x)

for all x ∈ X and ∀ g ∈ G. Thus T (F )(f) ∈ HomG(L(X), L(X)).
Given S ∈ HomG(L(X), L(X)), we know that ∃FS ∈ L(X × X) such that T (FS) = S. We

3



claim that FS ∈ L(X ×X)G. We have

λ(g)T (FS)(f)(x) =
∑
y∈X

FS(g−1x, y)f(y)

=
∑
y∈X

FS(x, y)f(g−1y) ∵ T ∈ HomG(L(X), L(X))

but∑
y∈X

FS(g−1x, y)f(y) =
∑
y∈X

FS(g−1x, g−1y)f(g−1y)

∴
∑
y∈X

FS(x, y)f(g−1y) =
∑
y∈X

FS(g−1x, g−1y)f(g−1y)

⇒
∑
y∈X

(FS(x, y)− FS(g−1x, g−1y))f(g−1y) = 0 ∀ x ∈ X

Therefore FS(x, y) − FS(g−1x, g−1y) = 0 for all x, y ∈ X and for all g ∈ G. Thus FS ∈
L(X ×X)G. This proves that HomG(L(X), L(X)) is isomorphic to L(X ×X)G.

2 Gelfand Pairs and Gelfand’s Lemma

From now on we will assume that G � X is a transitive action. Fix x0 and let K be the
stabilizer of x0, then we know that G/K ∼= X as G-sets. Given, this G and its subgroup K, we
define some functions called bi-K-invariant functions in L(G) as

Definition 2.1. Let f ∈ L(G) and let K be a subgroup of G. We say that f is a bi-K-
invariant function if

f(k1gk2) = f(g)

for all g ∈ G and k1, k2 ∈ K.

Define L(K\G/K) to be the subspace of of all bi-K-invariant functions on G. It can be
easily checked that L(K\G/K) is a 2-sided ideal of L(G).

Proposition 2.2. L(X ×X)G ∼= L(K\G/K)

Proof. Define Φ : L(X ×X)G → L(G). Where

Φ(F )(g) =
1

|K|
F (x0, gx0)

Claim: Φ(F ) ∈ L(K\G/K). Let g ∈ G and k1, k2 ∈ K. Then

Φ(F )(k1gk2) =
1

|K|
F (x0, k1gk2x0)

=
1

|K|
F (k1x0, k1gx0) ∵ K = Gx0(the stabilizer of x0), x0 = k1x0 = k2x0

=
1

|K|
F (x0, gx0)
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which is equal to Φ(F )(g). Therefore Φ(F ) ∈ L(K\G/K). Clearly Φ is linear. We prove next
that this map an algebra homomorphism. Let F, F ′ ∈ L(X ×X)G. Then

Φ(FF ′)(g) =
1

|K|
FF ′(x0, gx0)

=
1

|K|
∑
y∈X

F (x0, y)F ′(y, gx0)

=
1

|K|2
∑
h∈G

F (x0, hx0)F
′(hx0, gx0) ∵ each y repeats |K| times.

=
∑
h∈G

(
1

|K|
F (x0, hx0)

)(
1

|K|
F ′(x0, h

−1gx0)

)
= Φ(F ) ∗ Φ(F ′)(g)

For all g ∈ G. Next, if Φ(F ) is identically zero, we have F (x0, gx0) = 0 for all g ∈ G. Thus, for
any x, y ∈ G, x = gxx0 and y = gyx0. So F (x, y) = F (gxx0, gyx0) = F (x0, g

−1
x gyx0) = 0. Thus

F ≡ 0, therefore Φ is injective. Now, let f ∈ L(K\G/K). Then for x, y ∈ X, where x = gxx0
and y = gyx0, define F (x, y) = |K|f(g−1x gy). Then it is clear that F (gx, gy) = F (x, y) for all
g ∈ G and for all x, y ∈ X. Then 1

|K|F (x0, gx0) = |K| 1
|K|f(g) = f(g) for all g ∈ G. Thus Φ is

an isomorphism.

Corollary 2.3. HomG(L(X), L(X)) ∼= L(X ×X)G ∼= L(K\G/K)

Definition 2.4. Let G be a finite group and let K be its subgroup. Then the pair (G,K) is said
to be a Gelfand pair if for every g ∈ G, g−1 ∈ KgK.

Let G � X transitively with K being the stabilizer of a fixed x0 ∈ X, then we have the
following theorem.

Theorem 2.5. If (G,K) is a Gelfand pair, then the permutation representation (λ, L(X)) is
multiplicity-free.

Proof. : To show that (λ, L(X)) is multiplicity-free, we only need to show that L(K\G/K) is
commutative and theorem follows from Corollary 2.3.
Observe that, for any f ∈ L(K\G/K), f(g−1) = f(k1gk2) = f(g), since (G,K) is a Gelfand
pair. Let f1, f2 ∈ L(K\G/K). Then

f1 ∗ f2(g) =
∑
h∈G

f1(gh)f2(h
−1)

=
∑
h∈G

f1(h
−1g−1)f2(h)

=
∑
h∈G

f2(h)f1(h
−1k1gk2) for some k1, k2 ∈ K

=
∑
h∈G

f2(h)f1(h
−1k1g) ∵ 1, k2 ∈ K and f is bi-K-invariant

=
∑
h∈G

f2(k1h)f1(h
−1g) ∵ we replaced h by k−11 h

=
∑
h∈G

f2(h)f1(h
−1g)

= f2 ∗ f1(g)

for all g ∈ G. Thus L(K\G/K) is commutative.
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3 Multiplicity-Free Subgroups

Let G be a finite group and let H ⊆ G, be a subgroup. Define the action G×H � G as

(g, h).g0 = gg0h
−1

for g, g0 ∈ G and h ∈ H. Clearly this defines a transitive action and it is very easy to check that
H̃ = {(h, h) : h ∈ H} is the stabilizer of 1G. Now consider the permutation representation η
of G×H on L(G) i.e.,

η(g, h)(f)(g0) = f(g−1g0h)

for all g, g0 ∈ G and for all h ∈ H.

Definition 3.1. Let G be a finite group. A subgroup H of G is said to be a Multiplicity-Free
subgroup if for every ρ ∈ Ĥ and for every σ ∈ Ĝ, the multiplicity of ρ in σ|H is

dim(HomH(ρ, σ|H)) ≤ 1

.

Now we have a theorem, which characterizes multiplicity-free subgroups:

Theorem 3.2. Given G a finite group and its subgroup H, we have for any (ρ,W ) ∈ Ĥ and
any (σ, V ) ∈ Ĝ,

HomG×H(σ � ρ, η) ∼= HomH(ρ, σ∗|H)

where σ�ρ is the external tensor product of σ ∈ Ĝ and ρ ∈ Ĥ and σ∗ denotes the contragradient
of σ.

Proof. We know that the permutation representation η of G×H on L(G) is

η = IndG×H
H̃

ιH̃

where ιH̃ is the trivial representation of H̃. Then we have

HomG×H(σ � ρ, IndG×H
H̃

ιH̃) = HomH̃(σ � ρ|H̃ , ιH̃) [Frobenius Reciprocity Theorem]

= HomH((σ ⊗ ρ)|H , ιH)

= Hom(σ|H ⊗ ρ,C)H

= Hom(ρ,Hom(σ,C))H

= HomH(ρ, σ∗|H)

This tells us that the multiplicity of ρ in σ∗|H is equal to the multiplicity of σ � ρ in the
permutation representation of G×H on L(G).

A very important consequence of this theorem is as follows

Corollary 3.3. H is a multiplicity-free subgroup of G if and only if the permutation represen-
tation representation of G×H on L(G) is multiplicity-free.

Corollary 3.4. If (G×H, H̃) is a Gelfand pair, then H is a multiplicity-free subgroup of G.

Proof. H is multiplicity free if and only if the permutation representation of G × H on L(G)
is multiplicity free(by Theorem 3.2). The permutation representation of G × H on L(G) is
multiplicity free if (G×H, H̃) is a Gelfand pair(Theorem 2.5).
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Lemma 3.5. : (G×H, H̃) is a Gelfand pair if and only if for every g ∈ G, ∃ h ∈ H such that
g−1 = hgh−1.

Proof. If (G ×H, H̃) is a Gelfand pair, then for any g ∈ G (g, 1)−1 = (h1, h1)(g, 1)(h2, h2) for
some h1, h2 ∈ H. Thus we get

(g−1, 1) = (h1gh2, h1h2)

which implies that h2 = h−11 . Therefore g−1 = h1gh
−1
1 .

Conversely, if g is H-conjugate to its inverse, then for any g ∈ G and h ∈ H, we have

g−1h = h1h
−1gh−11

for some h1 ∈ H. Then let h′1 = h1h
−1 and let h′2 = h−11 h−1. Then

h′1gh
′
2 = g−1

h′1hh
′
2 = h−1

Therefore (h′1, h
′
1)(g, h)(h′2, h

′
2) = (g−1, h−1). This happens for all (g, h) ∈ G × H. Thus

(G×H, H̃) is a Gelfand pair.

Proof. (Proof of Theorem 0.10): From Corollary 3.4 of Theorem 3.2, it suffices to prove that
(Sn × Sn−1, ˜Sn−1) is a Gelfand pair. Here Sn−1 permutes {1, 2, . . . , n− 1}. We know that any
element w ∈ Sn can be written as product of disjoint cycles. i.e.,

w = (a11 → . . .→ a1λ1 → a11) . . . (ak1 → . . .→ akλk → ak1)

where
1 ≤ λk ≤ λk−1 ≤ . . . ≤ λ1

and
k∑
i=1

λi = n

λ(w) := (λ1, . . . λk) is called the cycle decomposition type of w. Let r(w) denote the length of
the cycle in the cycle decomposition of w, that moves n. Then conjugation of w by z ∈ Sn−1
looks like

zwz−1 = (z(a11)→ z(a12)→ . . .→ z(a1λ1)→ z(a11)) . . . (n→ z(at2)→ . . .

We claim that two elements w, w′ ∈ Sn are Sn−1-conjugate if and only if λ(w) = λ(w′) and
r(w) = r(w′). The proof is as follows.
If for w, w′ ∈ Sn, suppose λ(w) = λ(w′) and r(w) = r(w′) = r. So we have

w = (a11 → a12 → . . .→ a1λ1 → a11) . . . (n→ at2 . . .→ atλr → n) . . .

w′ = (a′11 → a′12 → . . .→ a′1λ1 → a′11) . . . (n→ a′t2 . . .→ a′tλr → n) . . .

Then define θ ∈ Sn as θ(aij) = a′ij for all i : 1 ≤ i ≤ k and j : 1 ≤ j ≤ λi. Then we have
θ(n) = n . Thus θ ∈ Sn−1 and θwθ−1 = w′.
The converse is trivial.
So for any w ∈ Sn,

w−1 = (a11 ← a12 ← . . .← a1λ1 ← a11) . . . (n← at2 . . .← atλr ← n) . . .

Thus w−1 is of the same cycle-type as w i.e., λ(w−1) = λ(w) and r(w1) = r(w). Thus w and
w−1 are Sn−1-conjugate, therefore,(Sn×Sn−1, ˜Sn−1) is a Gelfand pair(by Lemma 3.5) and thus
for every σ ∈ Ŝn, σ|Sn−1 is multiplicity-free. This is for every n ≥ 2
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