# Multiplicity Free Restrictions of Symmetric Groups 

Uday Bhaskar

March 12, 2014


#### Abstract

Using Gelfand's lemmas, I will be showing that the restriction of an irreducible representation of $\mathcal{S}_{n}$, when restricted to $\mathcal{S}_{n-1}$ is multiplicity free.


## Introduction: Basics about Group Representation Theory

In this section, $G$ denotes a finite group. I will mention a few definitions and the statement of the main theorem.

Definition 0.1. Let $G$ be a finite group and let $V$ be a vector space over a field $k$ ( $k$ could be a finite field, $\mathbb{R}$ or $\mathbb{C})$. Then a representation $(V, \sigma)$ of $G$ is defined as a homomorphism

$$
\sigma: G \rightarrow G L(V)
$$

where $G L(V)$ denotes the group of invertible linear maps on $V$.
Definition 0.2. Let $(V, \sigma)$ be a representation of $G$. Let $W$ be a subspace of $V$. We say that $W$ is a $G$-invariant subspace of $(V, \sigma)$ if for any $g \in G$, and any $w \in W, \sigma(g)(w) \in W$. Hence $\left.\sigma(g)\right|_{W}$ is an ivertible linear map on $W$ for all $g \in G$. Denoting $\sigma(g)_{W}$ by $\sigma_{W}(g)$, we have a representation $\left(\sigma_{W}, W\right)$ of $G$ and this is called a sub-representation of $G$.

Here is one theorem which is very useful:
Theorem 0.3. Maschke's Theorem: Let $(V, \sigma)$ be a representation of a group $G$. Let $W$ be a $G$-invariant subspace of $W$ i.e., for any $g \in G$ and any $w \in W$, we have $\sigma(g)(w) \in W$. Then $W$ has a $G$-invariant complement.

Its proof can be found in the book Linear Representations of Finite Groups written by J. P. Serre.

Definition 0.4. :Invariant Vector: Let $(V, \sigma)$ be a finite dimensional representation of a finite group $G$. We say that a vector $v$ is an Invariant Vector if $\sigma(g) v=v$ for all $g \in G$.

The set $V^{G}$ of invariant vectors of $V$ is a subspace of $V$.
Definition 0.5. Let $(V, \sigma)$ be a representation of $G$. Suppose $V=\bigoplus_{\rho \in J} m_{\rho} W_{\rho}$ (where $\left.J \subseteq \hat{G}\right)$ is the decompostion of $V$ in to a direct sum of irreducible representations $\left(W_{\rho}, \rho\right)$ of $G$. Then the direct sum of the $m_{\rho}$ copies of $W_{\rho}, m_{\rho} W_{\rho}$ is called the $\rho$-Isotypic Component of $(V, \sigma)$.

Definition 0.6. Let ( $V$, sigma) and $(W, \rho)$ be representations of the group $G$. Then a linear transformation $T: V \rightarrow W$ is called an intertwiner if $T \circ \sigma(g)(v)=\rho(g) \circ T(v)$ for all $v \in V$ and for all $g \in G$.

Definition 0.7. :Commutant: Let $(V, \sigma)$ be a representation of the group $G$. Then the space

$$
\operatorname{Hom}_{G}(V, V)=\{T: V \rightarrow V \mid T \text { is linear and } T \circ \sigma(g)=\sigma(g) \circ T, \forall g \in G\}
$$

is called the commutant of $(V, \sigma)$.
We have a representation $(V, \sigma)$ of group $G$ and $(V, \sigma)=\bigoplus_{\rho \in J} m_{\rho}\left(W_{\rho}, \rho\right)$. The $\rho$-isotypic component $m_{\rho} W_{\rho}$ is a direct sum of $m_{\rho}$ orthogonal copies of $W_{\rho}$.
We have the following lemma:
Lemma 0.8. The representation $(\sigma, V)$ of group $G$ is multiplicity-free if and only if its commutant $\operatorname{Hom}_{G}(V, V)$ is a commutative algebra.

Proof. We already know that if $(\sigma, V)=\bigoplus_{\rho \in J} m_{\rho}\left(\rho, W_{\rho}\right)$, where $J \subseteq \hat{G}$, then $\operatorname{Hom}_{G}(V, V)=$ $\bigoplus_{\rho \in J} M\left(m_{\rho}, \mathbb{C}\right)$ with component wise multiplication.
Proof of $\Rightarrow$ ) If $(\sigma, V)$ is multiplicity-free, then $m_{\rho}=1$ for all $\rho \in J$. Thus, $\operatorname{Hom}_{G}(V, V)=$ $\bigoplus_{\rho \in J} \mathbb{C}$, which clearly is a commutative algebra(with component-wise multiplication).
$\Leftarrow)$ : If $\operatorname{Hom}_{G}(V, V)$ is a commutative algebra, then we have that $\bigoplus_{\rho \in J} M\left(m_{\rho}, \mathbb{C}\right)$ is a commutatuve algebra. That means, for each $\rho \in J, M\left(m_{\rho}, \mathbb{C}\right)$ is commutative. But, the algebra $M\left(m_{\rho}, \mathbb{C}\right)$ is commutative if and only if $m_{\rho}=1$. Thus $m_{\rho}=1$ for all $\rho \in J$. Thus $(\sigma, V)$ is multiplicity free.

Let $G$ be a finite group and let $\hat{G}$ denote the set of irreducible representations of $G$ over $\mathbb{C}$. Given a finite dimensional representation $(V, \sigma)$ of $G$, we can write $(V, \sigma)=\bigoplus_{\rho \in J} m_{\rho} W_{\rho}$, where $J \subseteq \hat{G}$, by repeatedly applying Maschke's Theorem. Here $m_{\rho}$ is called the multiplicity of the irreducible representation ( $\rho, W_{\rho}$ ).

Definition 0.9. We say that a representation $(V, \sigma)$ is multiplicity free if in the direct sum decomposition of $(V, \sigma)$, the multiplicity $m_{\rho}$ of each irreducible representation $\left(\rho, W_{\rho}\right)$ is 1 .

Infact Maschke's theorem ensures us that the $(V, \sigma)$ is the direct sum of irreducible subspaces, which are mutually orthogonal(with respect to the inner product).

We have an idea of what irreducible representations of the symmetric groups $\mathcal{S}_{n}$ are for $n=3,4,5$ (from character theory). Using character theory, we can see that an irreducible representation say $\rho$ of $\mathcal{S}_{5}$ when restricted to $\mathcal{S}_{4}$ is a direct sum of inquivalent irreducible representations of $\mathcal{S}_{4}$ i.e., each irreducible representation of $\mathcal{S}_{4}$ occurring in $\left.\rho\right|_{\mathcal{S}_{4}}$, occurs exactly once. Similarly for irreducible representations of $\mathcal{S}_{4}$ restricted to $\mathcal{S}_{3}$.
We cannot use this approach for $\mathcal{S}_{n}$ for $n$ in general. Okounkov and Vershik's approach using Gelfand's lemma was used in proving the following theorem:

Theorem 0.10. An irreducible representation $\mathcal{S}_{n}$ when restricted to $\mathcal{S}_{n-1}$ for $n \geq 2$, is multiplicity free.

In this talk, we shall use Gelfand's lemma to prove the statement.

## 1 Permutation Representations

Let $G \circlearrowright X$. Then consider $L(X)=\{f: X \rightarrow \mathbb{C}\}$. We know that this is a vector-space, with the dirac functions, $\delta_{x}$ for $x \in X$ forming its basis.

Definition 1.1. Define $\lambda: G \rightarrow G L(L(X))$ as $\lambda(g)(f)(x)=f\left(g^{-1} x\right)$ for all $x \in X$ and for all $g \in G$. This $\lambda$ is a representation and this $\lambda$ is called the Permutation Representation.

Consider $G \circlearrowright X \times X$, with $g .(x, y):=(g x, g y)$. Then we consider the algebra $L(X \times X)$ with multiplication defined as $F_{1} \cdot F_{2}(x, y)=\sum_{z \in X} F_{1}(x, z) F_{2}(z, y)$ for any $F_{1}, F_{2} \in L(X, X)$. Consider the permutation representation of $G$ on $L(X \times X)$. Now we have an important lemma:

Lemma 1.2. $\operatorname{Hom}_{G}(L(X), L(X)) \cong L(X \times X)^{G}$.
Proof. Define $T: L(X \times X) \rightarrow \operatorname{Hom}(L(X), L(X))$ as

$$
T(F)(f)(x)=\sum_{y \in X} F(x, y) f(y)
$$

Clearly this map is a linear map. Suppose $T(F)(f)=0$ for all $f \in L(X)$. Then $T(F)\left(\delta_{y}\right)=0$ for all $y \in X$. But $T(F)\left(\delta_{y}\right)(x)=\sum_{z \in X} F(x, z) \delta_{y}(z)=F(x, y)$. Thus $F(x, y)=0$ for all $x, y \in X$. Thus $T$ is one-one and since $\operatorname{dim} L(X \times X)=|X|^{2}=\operatorname{dimHom}(L(X), L(X))$, we get that this $T$ is a bijection, therefore an isomorphism between $L(X \times X) \rightarrow \operatorname{Hom}(L(X), L(X))$. Now we define the same map on $L(X \times X)^{G}$. So we need to check that $T(F) \in \operatorname{Hom}_{G}(L(X), L(X))$.

$$
\begin{aligned}
T(F) \circ \lambda(g)(f)(x) & =\sum_{y \in X} F(x, y) \lambda(g) f(y) \\
& =\sum_{y \in X} F(x, y) f\left(g^{-1} y\right) \\
& =\sum_{y \in X} F\left(g^{-1} x, g^{-1} y\right) f\left(g^{-1} y\right) \because F \in L(X \times X)^{G} \\
& =\sum_{y \in X} F\left(g^{-1} x, y\right) f(y) \\
& =T(F)(f)\left(g^{-1} x\right) \\
& =[\lambda(g) \circ T(F)(f)](x)
\end{aligned}
$$

for all $x \in X$ and $\forall g \in G$. Thus $T(F)(f) \in \operatorname{Hom}_{G}(L(X), L(X))$.
Given $S \in \operatorname{Hom}_{G}(L(X), L(X))$, we know that $\exists F_{S} \in L(X \times X)$ such that $T\left(F_{S}\right)=S$. We
claim that $F_{S} \in L(X \times X)^{G}$. We have

$$
\begin{aligned}
& \lambda(g) T\left(F_{S}\right)(f)(x)=\sum_{y \in X} F_{S}\left(g^{-1} x, y\right) f(y) \\
&=\sum_{y \in X} F_{S}(x, y) f\left(g^{-1} y\right) \because T \in \operatorname{Hom}_{G}(L(X), L(X)) \\
& \text { but } \\
& \sum_{y \in X} F_{S}\left(g^{-1} x, y\right) f(y)=\sum_{y \in X} F_{S}\left(g^{-1} x, g^{-1} y\right) f\left(g^{-1} y\right) \\
& \therefore \sum_{y \in X} F_{S}(x, y) f\left(g^{-1} y\right)=\sum_{y \in X} F_{S}\left(g^{-1} x, g^{-1} y\right) f\left(g^{-1} y\right) \\
& \Rightarrow \sum_{y \in X}\left(F_{S}(x, y)-F_{S}\left(g^{-1} x, g^{-1} y\right)\right) f\left(g^{-1} y\right)=0 \forall x \in X
\end{aligned}
$$

Therefore $F_{S}(x, y)-F_{S}\left(g^{-1} x, g^{-1} y\right)=0$ for all $x, y \in X$ and for all $g \in G$. Thus $F_{S} \in$ $L(X \times X)^{G}$. This proves that $\operatorname{Hom}_{G}(L(X), L(X))$ is isomorphic to $L(X \times X)^{G}$.

## 2 Gelfand Pairs and Gelfand's Lemma

From now on we will assume that $G \circlearrowright X$ is a transitive action. Fix $x_{0}$ and let $K$ be the stabilizer of $x_{0}$, then we know that $G / K \cong X$ as $G$-sets. Given, this $G$ and its subgroup $K$, we define some functions called bi-K-invariant functions in $L(G)$ as

Definition 2.1. Let $f \in L(G)$ and let $K$ be a subgroup of $G$. We say that $f$ is a bi-Kinvariant function if

$$
f\left(k_{1} g k_{2}\right)=f(g)
$$

for all $g \in G$ and $k_{1}, k_{2} \in K$.
Define $L(K \backslash G / K)$ to be the subspace of of all bi- $K$-invariant functions on $G$. It can be easily checked that $L(K \backslash G / K)$ is a 2-sided ideal of $L(G)$.

Proposition 2.2. $L(X \times X)^{G} \cong L(K \backslash G / K)$
Proof. Define $\Phi: L(X \times X)^{G} \rightarrow L(G)$. Where

$$
\Phi(F)(g)=\frac{1}{|K|} F\left(x_{0}, g x_{0}\right)
$$

Claim: $\Phi(F) \in L(K \backslash G / K)$. Let $g \in G$ and $k_{1}, k_{2} \in K$. Then

$$
\begin{aligned}
\Phi(F)\left(k_{1} g k_{2}\right) & =\frac{1}{|K|} F\left(x_{0}, k_{1} g k_{2} x_{0}\right) \\
& =\frac{1}{|K|} F\left(k_{1} x_{0}, k_{1} g x_{0}\right) \because K=G_{x_{0}}\left(\text { the stabilizer of } x_{0}\right), x_{0}=k_{1} x_{0}=k_{2} x_{0} \\
& =\frac{1}{|K|} F\left(x_{0}, g x_{0}\right)
\end{aligned}
$$

which is equal to $\Phi(F)(g)$. Therefore $\Phi(F) \in L(K \backslash G / K)$. Clearly $\Phi$ is linear. We prove next that this map an algebra homomorphism. Let $F, F^{\prime} \in L(X \times X)^{G}$. Then

$$
\begin{aligned}
\Phi\left(F F^{\prime}\right)(g) & =\frac{1}{|K|} F F^{\prime}\left(x_{0}, g x_{0}\right) \\
& =\frac{1}{|K|} \sum_{y \in X} F\left(x_{0}, y\right) F^{\prime}\left(y, g x_{0}\right) \\
& =\frac{1}{|K|^{2}} \sum_{h \in G} F\left(x_{0}, h x_{0}\right) F^{\prime}\left(h x_{0}, g x_{0}\right) \because \text { each } y \text { repeats }|K| \text { times. } \\
& =\sum_{h \in G}\left(\frac{1}{|K|} F\left(x_{0}, h x_{0}\right)\right)\left(\frac{1}{|K|} F^{\prime}\left(x_{0}, h^{-1} g x_{0}\right)\right) \\
& =\Phi(F) * \Phi\left(F^{\prime}\right)(g)
\end{aligned}
$$

For all $g \in G$. Next, if $\Phi(F)$ is identically zero, we have $F\left(x_{0}, g x_{0}\right)=0$ for all $g \in G$. Thus, for any $x, y \in G, x=g_{x} x_{0}$ and $y=g_{y} x_{0}$. So $F(x, y)=F\left(g_{x} x_{0}, g_{y} x_{0}\right)=F\left(x_{0}, g_{x}^{-1} g_{y} x_{0}\right)=0$. Thus $F \equiv 0$, therefore $\Phi$ is injective. Now, let $f \in L(K \backslash G / K)$. Then for $x, y \in X$, where $x=g_{x} x_{0}$ and $y=g_{y} x_{0}$, define $F(x, y)=|K| f\left(g_{x}^{-1} g_{y}\right)$. Then it is clear that $F(g x, g y)=F(x, y)$ for all $g \in G$ and for all $x, y \in X$. Then $\frac{1}{|K|} F\left(x_{0}, g x_{0}\right)=|K| \frac{1}{|K|} f(g)=f(g)$ for all $g \in G$. Thus $\Phi$ is an isomorphism.
Corollary 2.3. $\operatorname{Hom}_{G}(L(X), L(X)) \cong L(X \times X)^{G} \cong L(K \backslash G / K)$
Definition 2.4. Let $G$ be a finite group and let $K$ be its subgroup. Then the pair $(G, K)$ is said to be a Gelfand pair if for every $g \in G, g^{-1} \in K g K$.

Let $G \circlearrowright X$ transitively with $K$ being the stabilizer of a fixed $x_{0} \in X$, then we have the following theorem.
Theorem 2.5. If $(G, K)$ is a Gelfand pair, then the permutation representation $(\lambda, L(X))$ is multiplicity-free.
Proof. : To show that $(\lambda, L(X))$ is multiplicity-free, we only need to show that $L(K \backslash G / K)$ is commutative and theorem follows from Corollary 2.3 .
Observe that, for any $f \in L(K \backslash G / K), f\left(g^{-1}\right)=f\left(k_{1} g k_{2}\right)=f(g)$, since $(G, K)$ is a Gelfand pair. Let $f_{1}, f_{2} \in L(K \backslash G / K)$. Then

$$
\begin{aligned}
f_{1} * f_{2}(g) & =\sum_{h \in G} f_{1}(g h) f_{2}\left(h^{-1}\right) \\
& =\sum_{h \in G} f_{1}\left(h^{-1} g^{-1}\right) f_{2}(h) \\
& =\sum_{h \in G} f_{2}(h) f_{1}\left(h^{-1} k_{1} g k_{2}\right) \text { for some } k_{1}, k_{2} \in K \\
& =\sum_{h \in G} f_{2}(h) f_{1}\left(h^{-1} k_{1} g\right) \because 1, k_{2} \in K \text { and } f \text { is bi- } \text { - invariant } \\
& =\sum_{h \in G} f_{2}\left(k_{1} h\right) f_{1}\left(h^{-1} g\right) \because \text { we replaced } h \text { by } k_{1}^{-1} h \\
& =\sum_{h \in G} f_{2}(h) f_{1}\left(h^{-1} g\right) \\
& =f_{2} * f_{1}(g)
\end{aligned}
$$

for all $g \in G$. Thus $L(K \backslash G / K)$ is commutative.

## 3 Multiplicity-Free Subgroups

Let $G$ be a finite group and let $H \subseteq G$, be a subgroup. Define the action $G \times H \circlearrowright G$ as

$$
(g, h) \cdot g_{0}=g g_{0} h^{-1}
$$

for $g, g_{0} \in G$ and $h \in H$. Clearly this defines a transitive action and it is very easy to check that $\tilde{H}=\{(h, h): h \in H\}$ is the stabilizer of $1_{G}$. Now consider the permutation representation $\eta$ of $G \times H$ on $L(G)$ i.e.,

$$
\eta(g, h)(f)\left(g_{0}\right)=f\left(g^{-1} g_{0} h\right)
$$

for all $g, g_{0} \in G$ and for all $h \in H$.
Definition 3.1. Let $G$ be a finite group. A subgroup $H$ of $G$ is said to be a Multiplicity-Free subgroup if for every $\rho \in \hat{H}$ and for every $\sigma \in \hat{G}$, the multiplicity of $\rho$ in $\left.\sigma\right|_{H}$ is

$$
\operatorname{dim}\left(\operatorname{Hom}_{H}\left(\rho,\left.\sigma\right|_{H}\right)\right) \leq 1
$$

Now we have a theorem, which characterizes multiplicity-free subgroups:
Theorem 3.2. Given $G$ a finite group and its subgroup $H$, we have for any $(\rho, W) \in \hat{H}$ and any $(\sigma, V) \in \hat{G}$,

$$
\operatorname{Hom}_{G \times H}(\sigma \boxtimes \rho, \eta) \cong \operatorname{Hom}_{H}\left(\rho,\left.\sigma^{*}\right|_{H}\right)
$$

where $\sigma \boxtimes \rho$ is the external tensor product of $\sigma \in \hat{G}$ and $\rho \in \hat{H}$ and $\sigma^{*}$ denotes the contragradient of $\sigma$.

Proof. We know that the permutation representation $\eta$ of $G \times H$ on $L(G)$ is

$$
\eta=\operatorname{Ind}_{\tilde{H}}^{G \times H} \iota_{\tilde{H}}
$$

where $\iota_{\tilde{H}}$ is the trivial representation of $\tilde{H}$. Then we have

$$
\begin{aligned}
\operatorname{Hom}_{G \times H}\left(\sigma \boxtimes \rho, \operatorname{Ind}_{\tilde{H}}^{G \times H} \iota_{\tilde{H}}\right) & =\operatorname{Hom}_{\tilde{H}}\left(\left.\sigma \boxtimes \rho\right|_{\tilde{H}}, \iota_{\tilde{H}}\right) \text { [Frobenius Reciprocity Theorem] } \\
& =\operatorname{Hom}_{H}\left(\left.(\sigma \otimes \rho)\right|_{H}, \iota_{H}\right) \\
& =\operatorname{Hom}\left(\left.\sigma\right|_{H} \otimes \rho, \mathbb{C}\right)^{H} \\
& =\operatorname{Hom}(\rho, \operatorname{Hom}(\sigma, \mathbb{C}))^{H} \\
& =\operatorname{Hom}_{H}\left(\rho,\left.\sigma^{*}\right|_{H}\right)
\end{aligned}
$$

This tells us that the multiplicity of $\rho$ in $\left.\sigma^{*}\right|_{H}$ is equal to the multiplicity of $\sigma \boxtimes \rho$ in the permutation representation of $G \times H$ on $L(G)$.

A very important consequence of this theorem is as follows
Corollary 3.3. $H$ is a multiplicity-free subgroup of $G$ if and only if the permutation representation representation of $G \times H$ on $L(G)$ is multiplicity-free.
Corollary 3.4. If $(G \times H, \tilde{H})$ is a Gelfand pair, then $H$ is a multiplicity-free subgroup of $G$.
Proof. $H$ is multiplicity free if and only if the permutation representation of $G \times H$ on $L(G)$ is multiplicity free(by Theorem 3.2). The permutation representation of $G \times H$ on $L(G)$ is multiplicity free if $(G \times H, \tilde{H})$ is a Gelfand pair(Theorem 2.5).

Lemma 3.5. : $(G \times H, \tilde{H})$ is a Gelfand pair if and only if for every $g \in G, \exists h \in H$ such that $g^{-1}=h g h^{-1}$.
Proof. If $(G \times H, \tilde{H})$ is a Gelfand pair, then for any $g \in G(g, 1)^{-1}=\left(h_{1}, h_{1}\right)(g, 1)\left(h_{2}, h_{2}\right)$ for some $h_{1}, h_{2} \in H$. Thus we get

$$
\left(g^{-1}, 1\right)=\left(h_{1} g h_{2}, h_{1} h_{2}\right)
$$

which implies that $h_{2}=h_{1}^{-1}$. Therefore $g^{-1}=h_{1} g h_{1}^{-1}$.
Conversely, if $g$ is $H$-conjugate to its inverse, then for any $g \in G$ and $h \in H$, we have

$$
g^{-1} h=h_{1} h^{-1} g h_{1}^{-1}
$$

for some $h_{1} \in H$. Then let $h_{1}^{\prime}=h_{1} h^{-1}$ and let $h_{2}^{\prime}=h_{1}^{-1} h^{-1}$. Then

$$
\begin{aligned}
& h_{1}^{\prime} g h_{2}^{\prime}=g^{-1} \\
& h_{1}^{\prime} h h_{2}^{\prime}=h^{-1}
\end{aligned}
$$

Therefore $\left(h_{1}^{\prime}, h_{1}^{\prime}\right)(g, h)\left(h_{2}^{\prime}, h_{2}^{\prime}\right)=\left(g^{-1}, h^{-1}\right)$. This happens for all $(g, h) \in G \times H$. Thus $(G \times H, \tilde{H})$ is a Gelfand pair.

Proof. (Proof of Theorem 0.10): From Corollary 3.4 of Theorem 3.2, it suffices to prove that $\left(\mathcal{S}_{n} \times \mathcal{S}_{n-1}, \mathcal{S}_{n-1}\right)$ is a Gelfand pair. Here $\mathcal{S}_{n-1}$ permutes $\{1,2, \ldots, n-1\}$. We know that any element $w \in \mathcal{S}_{n}$ can be written as product of disjoint cycles. i.e.,

$$
w=\left(a_{11} \rightarrow \ldots \rightarrow a_{1 \lambda_{1}} \rightarrow a_{11}\right) \ldots\left(a_{k 1} \rightarrow \ldots \rightarrow a_{k \lambda_{k}} \rightarrow a_{k 1}\right)
$$

where

$$
\begin{gathered}
1 \leq \lambda_{k} \leq \lambda_{k-1} \leq \ldots \leq \lambda_{1} \\
\text { and } \\
\sum_{i=1}^{k} \lambda_{i}=n
\end{gathered}
$$

$\lambda(w):=\left(\lambda_{1}, \ldots \lambda_{k}\right)$ is called the cycle decomposition type of $w$. Let $r(w)$ denote the length of the cycle in the cycle decomposition of $w$, that moves $n$. Then conjugation of $w$ by $z \in \mathcal{S}_{n-1}$ looks like

$$
z w z^{-1}=\left(z\left(a_{11}\right) \rightarrow z\left(a_{12}\right) \rightarrow \ldots \rightarrow z\left(a_{1 \lambda_{1}}\right) \rightarrow z\left(a_{11}\right)\right) \ldots\left(n \rightarrow z\left(a_{t 2}\right) \rightarrow \ldots\right.
$$

We claim that two elements $w, w^{\prime} \in \mathcal{S}_{n}$ are $\mathcal{S}_{n-1}$-conjugate if and only if $\lambda(w)=\lambda\left(w^{\prime}\right)$ and $r(w)=r\left(w^{\prime}\right)$. The proof is as follows.
If for $w, w^{\prime} \in \mathcal{S}_{n}$, suppose $\lambda(w)=\lambda\left(w^{\prime}\right)$ and $r(w)=r\left(w^{\prime}\right)=r$. So we have

$$
\begin{gathered}
w=\left(a_{11} \rightarrow a_{12} \rightarrow \ldots \rightarrow a_{1 \lambda_{1}} \rightarrow a_{11}\right) \ldots\left(n \rightarrow a_{t 2} \ldots \rightarrow a_{t \lambda_{r}} \rightarrow n\right) \ldots \\
w^{\prime}=\left(a_{11}^{\prime} \rightarrow a_{12}^{\prime} \rightarrow \ldots \rightarrow a_{1 \lambda_{1}}^{\prime} \rightarrow a_{11}^{\prime}\right) \ldots\left(n \rightarrow a_{t 2}^{\prime} \ldots \rightarrow a_{t \lambda_{r}}^{\prime} \rightarrow n\right) \ldots
\end{gathered}
$$

Then define $\theta \in \mathcal{S}_{n}$ as $\theta\left(a_{i j}\right)=a_{i j}^{\prime}$ for all $i: 1 \leq i \leq k$ and $j: 1 \leq j \leq \lambda_{i}$. Then we have $\theta(n)=n$. Thus $\theta \in \mathcal{S}_{n-1}$ and $\theta w \theta^{-1}=w^{\prime}$.
The converse is trivial.
So for any $w \in \mathcal{S}_{n}$,

$$
w^{-1}=\left(a_{11} \leftarrow a_{12} \leftarrow \ldots \leftarrow a_{1 \lambda_{1}} \leftarrow a_{11}\right) \ldots\left(n \leftarrow a_{t 2} \ldots \leftarrow a_{t \lambda_{r}} \leftarrow n\right) \ldots
$$

Thus $w^{-1}$ is of the same cycle-type as $w$ i.e., $\lambda\left(w^{-1}\right)=\lambda(w)$ and $r\left(w^{1}\right)=r(w)$. Thus $w$ and $w^{-1}$ are $\mathcal{S}_{n-1}$-conjugate, therefore, $\left(\mathcal{S}_{n} \times \mathcal{S}_{n-1}, \mathcal{S}_{n-1}\right)$ is a Gelfand pair(by Lemma 3.5) and thus for every $\sigma \in \hat{\mathcal{S}}_{n},\left.\sigma\right|_{\mathcal{S}_{n-1}}$ is multiplicity-free. This is for every $n \geq 2$

