# Ramanujan Graphs and the Matrix Completion Problem 

## M. Vidyasagar FRS

SERB National Science Chair and Distinguished Professor IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/~m_vidyasagar/

Gonit Sora 20 March 2021

## Outline

(1) Ramanujan Graphs

- Some Basic Graph Theory
- Ramanujan Graphs and Ramanujan Bigraphs
(2) Construction of Ramanujan Graphs
- Cayley Graphs
- LPS Construction of Ramanujan Graphs
(3) Construction of Ramanujan Bigraphs

4 The Matrix Completion Problem

- Problem Statement and Solution
- Fault-Tolerant Ramanujan Graphs

Ramanujan Graphs

## Outline

## (1) Ramanujan Graphs

- Some Basic Graph Theory
- Ramanujan Graphs and Ramanujan Bigraphs
(2) Construction of Ramanujan Graphs
- Cayley Graphs
- LPS Construction of Ramanujan Graphs
(3) Construction of Ramanujan Bigraphs
(4) The Matrix Completion Problem
- Problem Statement and Solution
- Fault-Tolerant Ramanujan Graphs


## Outline

(1) Ramanujan Graphs

- Some Basic Graph Theory
- Ramanujan Graphs and Ramanujan Bigraphs
(2) Construction of Ramanujan Graphs
- Cayley Graphs
- LPS Construction of Ramanujan Graphs
(3) Construction of Ramanujan Bigraphs
a The Matrix Completion Problem
- Problem Statement and Solution
- Fault-Tolerant Ramanujan Graphs


## Singular Values and SVD

Suppose $M \in \mathbb{R}^{m \times n}$ with (say) $m \leq n$. Then there exist matrices $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times m}$ and nonnegative numbers $\sigma_{1}, \cdots, \sigma_{m}$ such that

$$
U^{\top} U=V^{\top} V=I_{m}, M=\sum_{i=1}^{m} \sigma_{i} u_{i} v_{i}^{\top}
$$

This is called the singular value decomposition (SVD) of $M$. Here $\sigma_{1}, \cdots, \sigma_{m}$ are the eigenvalues of $M M^{\top}$, and are called the singular values of $M$. The rank of $M$ is the number of nonzero singular values.

Singular values are less sensitive to errors in measuring $M$ than eigenvalues.

## Some Basic Graph Theory

A Graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ consists of a set "vertices" $\mathcal{V}$, and a set of "edges" $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$. It is said to be undirected if, whenever $\left(v_{i}, v_{j}\right) \in \mathcal{E}$, also $\left(v_{j}, v_{i}\right) \in \mathcal{E}$. A graph is simple if (i) there are no self-loops (edges of the form $\left(v_{i}, v_{i}\right)$ ), and no multiple edges between any pair of vertices. A graph is bipartite if we can partition $\mathcal{V}$ as $\mathcal{V}_{r} \cup \mathcal{V}_{c}$ such that

$$
\mathcal{E} \cap\left(V_{r} \times V_{r}\right)=\emptyset, \mathcal{E} \cap\left(V_{c} \times V_{c}\right)=\emptyset
$$

Equivalently

$$
\mathcal{E} \subseteq\left(\left(\mathcal{V}_{r} \times \mathcal{V}_{c}\right) \cup\left(\mathcal{V}_{c} \times V_{r}\right)\right)
$$

A bipartite graph is balanced if $\left|\mathcal{V}_{r}\right|=\left|\mathcal{V}_{c}\right|$, unbalanced otherwise.

## Depiction of a Bipartite Graph



No edges between two vertices in $\mathcal{V}_{r}$, or between two vertices in $\mathcal{V}_{c}$.

## Incidence Matrix and Regularity

The incidence matrix $A \in\{0,1\}^{|\mathcal{V}| \times|\mathcal{V}|}$ has $a_{i j}=1$ if $(i, j) \in \mathcal{E}$, and $a_{i j}=0$ otherwise.
The incidence matrix of a bipartite graph looks like

$$
A=\left[\begin{array}{cc}
0 & B \\
B^{\top} & 0
\end{array}\right],
$$

where $B \in\{0,1\}^{\left|\mathcal{V}_{r}\right| \times\left|\mathcal{V}_{c}\right|}$ is called the biadjacency matrix.
A graph is $d$-regular if every vertex has degree $d$. A bipartite graph is $\left(d_{r}, d_{c}\right)$-biregular if all vertices in $\mathcal{V}_{r}$ have degree $d_{r}$ and all vertices in $V_{c}$ have degree $d_{c}$ (which also implies that $\left.d_{r}\left|\mathcal{V}_{r}\right|=d_{c}\left|\mathcal{V}_{c}\right|\right)$.

## Spectra of Graphs

Fact: Suppose $A \in\{0,1\}^{n \times n}$ is the adjacency graph of a connected undirected $d$-regular graph. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ denote the eigenvalues of $A$. Then
(1) $\lambda_{i} \in[-d, d]$ for all $i$.
(2) $\lambda_{1}=d$ with associated eigenvector $\mathbf{1}_{n}$, and $\lambda_{i}<d$ for $i \geq 2$.
(3) $\lambda_{n}=-d$ if and only if the graph is bipartite.

## Spectra of Bipartite Graphs

Fact: If a bipartite graph is $\left(d_{r}, d_{c}\right)$-biregular, then
(1) The spectrum of $A$ is $\left\{ \pm \sigma_{1}, \ldots, \pm \sigma_{l}\right\}$, where $\sigma_{i}$ are the singular values of $B$, together with the required number of zeros.
(2) $\sigma_{1}=\sqrt{d_{r} d_{c}}$ is the largest singular value of $B$.

## Outline

(1) Ramanujan Graphs

- Some Basic Graph Theory
- Ramanujan Graphs and Ramanujan Bigraphs
(2) Construction of Ramanujan Graphs
- Cayley Graphs
- LPS Construction of Ramanujan Graphs
(3) Construction of Ramanujan Bigraphs

4 The Matrix Completion Problem

- Problem Statement and Solution
- Fault-Tolerant Ramanujan Graphs


## Definition of a Ramanujan Graph

## Definition

A $d$-regular graph $\mathcal{G}$ is said to be a Ramanujan graph if the second largest eigenvalue $\lambda_{2}$ of $A$ satisfies

$$
\left|\lambda_{2}\right| \leq 2 \sqrt{d-1} .
$$

## Theorem

(Alon-Boppana Bound (1986)) In any d-regular graph with $n$ vertices, we have that

$$
\liminf _{n \rightarrow \infty}\left|\lambda_{2}\right| \geq 2 \sqrt{d-1}
$$

## Definition of a Ramanujan Bigraph

## Definition

Suppose a bipartite graph is $\left(d_{r}, d_{c}\right)$-biregular. Then it is said to be a Ramanujan bigraph if

$$
\left|\sigma_{2}\right| \leq \sqrt{d_{r}-1}+\sqrt{d_{c}-1}
$$

## Theorem

(Feng-Li (1996)) If we fix $d_{r}, d_{c}$ and let $n_{r}, n_{c} \rightarrow \infty$ (subject of course to $\left.n_{r} d_{r}=n_{c} d_{c}\right)$, then

$$
\liminf _{\min \left\{n_{r}, n_{c}\right\} \rightarrow \infty}\left|\sigma_{2}\right| \geq \sqrt{d_{r}-1}+\sqrt{d_{c}-1}
$$

## Prevalence of Ramanujan Graphs

## Theorem

(Friedman (2008)) Suppose $d \geq 4$ is even and let $\epsilon>0$ be arbitrary. Consider a $d$-regular n-vertex graph formed by $d / 2$ uniform and independent permutations on $[n]$. Then

$$
\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right\} \leq 2 \sqrt{d-1}+\epsilon \text { w.p. } 1-O\left(n^{-r}\right)
$$

where

$$
r=[(\sqrt{d-1}+1) / 2]+1 .
$$

Therefore

$$
\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right\} \leq 2 \sqrt{d-1}+\epsilon \text { a.a.s. }
$$

Simply put: Almost all $d$-regular graphs "almost" satisfy the Ramanujan property.

## Prevalence of Ramanujan Bigraphs

No formal statement. Theorem due to Decker et al. (2018): An analogous statement holds if we study $\left(d_{r}, d_{c}\right)$-regular graphs with $\left(n_{r}, n_{c}\right)$ vertices, fix $d_{r}, d_{c}$ and let $n_{r}, n_{c} \rightarrow \infty$ (subject of course to $n_{r} d_{r}=n_{c} d_{c}$ ).

## Where Are the Ramanujan Graphs Hiding?

"Randomly generated" $d$-regular graphs almost satisfy the Ramanujan property with a probability that approaches 1 as $n \rightarrow \infty$. (Ditto for biregular graphs.)
Ramanujan graphs are everywhere, but how to construct them explicitly?
Thus far there are just a handful of explicit constructions of Ramanujan graphs, and not a single explicit construction of a Ramanujan bigraph!

## Outline

(1) Ramanujan Graphs

- Some Basic Graph Theory
- Ramanujan Graphs and Ramanujan Bigraphs
(2) Construction of Ramanujan Graphs
- Cayley Graphs
- LPS Construction of Ramanujan Graphs
(3) Construction of Ramanujan Bigraphs
(4) The Matrix Completion Problem
- Problem Statement and Solution
- Fault-Tolerant Ramanujan Graphs


## Outline

(1) Ramanujan Graphs

- Some Basic Graph Theory
- Ramanujan Graphs and Ramanujan Bigraphs
(2) Construction of Ramanujan Graphs
- Cayley Graphs
- LPS Construction of Ramanujan Graphs
(3) Construction of Ramanujan Bigraphs
a The Matrix Completion Problem
- Problem Statement and Solution
- Fault-Tolerant Ramanujan Graphs


## Cayley Graphs

Suppose $G$ is a group (not necessarily Abelian), and $S \subseteq G$ satisfies $a \in S \Longrightarrow a^{-1} \in S$. Such a set is called "symmetric." Then the Cayley graph of $G$ generated by $S$ has the elements of $G$ as its vertices, and the edge set $\{(x, x a), x \in G, a \in S\}$.

We deal only with finite groups.
If there is an edge ( $x, x a$ ), then there is also an edge $\left(x a, x a a^{-1}\right)=(x a, x)$. Hence a Cayley graph is $|S|$-regular and undirected.

## Example of a Cayley Graph

Suppose $G=\mathbb{Z}_{8}$, the set of integers with addition modulo 8 as the group operation, and suppose that $S=\{3,5\}$. Note that $S$ is symmetric.

The associated Cayley graph is 2 -regular. It is shown both as a list of vertices and associated edges, and also in pictorial form on the next slide. Note that the notation $\mathcal{N}(i)$ denotes the set of neighbors of vertex $i$.

| $i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathcal{N}(i)$ | $(3,5)$ | $(4,6)$ | $(5,7)$ | $(6,0)$ | $(7,1)$ | $(0,2)$ | $(1,3)$ | $(2,4)$ |

## Example of a Cayley Graph (Cont'd)



Figure: Cayley graph of $\mathbb{Z}_{8}$ with $S=\{3,5\}$. The graph is connected and bipartite.

## A Negative Result

(Due to Friedman-Murty-Tillich, (2003)) In any Cayley graph where the group $G$ is Abelian, we have that

$$
\left|\lambda_{2}\right| \geq d-O\left(d n^{-4 / d}\right)
$$

where $d=|S|$.
Note that

$$
d-O\left(d n^{-4 / d}\right) \rightarrow d^{-} \text {as } n \rightarrow \infty
$$

Therefore, as $n \rightarrow \infty$, the second largest eigenvalue of a Cayley graph not only goes past $2 \sqrt{d-1}$, but in fact approaches $d$ from below! Hence it fails to be a Ramanujan graph.

Conclusion: If we want to construct Ramanujan graphs with fixed $d$ and arbitrarily large $n$ using the Cayley method, then the underlying group $G$ cannot be Abelian!

## Outline

(1) Ramanujan Graphs

- Some Basic Graph Theory
- Ramanujan Graphs and Ramanujan Bigraphs
(2) Construction of Ramanujan Graphs
- Cayley Graphs
- LPS Construction of Ramanujan Graphs
(3) Construction of Ramanujan Bigraphs

4 The Matrix Completion Problem

- Problem Statement and Solution
- Fault-Tolerant Ramanujan Graphs


## General and Projective Linear Groups

Suppose $p$ is a prime number. Then $\mathbb{F}_{q}:=\{0,1, \cdots, q-1\}$ is a field if addition and multiplication are modulo $q$. Define

$$
G L\left(n, \mathbb{F}_{q}\right):=\left\{M \in \mathbb{F}_{q}^{n \times n}: \operatorname{det}(M) \neq 0\right\}
$$

the set of $n \times n$ matrices with elements in $\mathbb{F}_{q}$, whose determinant is nonzero. This is called the general linear group of order $n$ over $\mathbb{F}_{q}$.

## General and Projective Linear Groups (Cont'd)

The projective general linear group of order $n$, denoted by $P G L\left(n, \mathbb{F}_{q}\right)$, is obtained by defining $A \sim B$ if $A=c B$ for some $c \neq 0$. Here $A, B \in G L\left(n, \mathbb{F}_{q}\right)$ and $c \in \mathbb{F}_{q}$.
Fact:

$$
\begin{gathered}
\left|G L\left(n, \mathbb{F}_{q}\right)\right|=\prod_{i=0}^{n-1}\left(q^{n}-q^{i}\right) \\
\left|P G L\left(n, \mathbb{F}_{q}\right)\right|=\frac{1}{q-1} \prod_{i=0}^{n-1}\left(q^{n}-q^{i}\right) \\
\left|G L\left(2, \mathbb{F}_{q}\right)\right|=\left(q^{2}-1\right)\left(q^{2}-q\right) \\
\left|P G L\left(2, \mathbb{F}_{q}\right)\right|=\frac{\left(q^{2}-1\right)\left(q^{2}-q\right)}{q-1}=q\left(q^{2}-1\right)
\end{gathered}
$$

## The Lubotzky-Phillips-Sarnak (LPS) Construction

(Lubotzky-Phillips-Sarnak (1988)). Choose $p, q$ to be distinct prime numbers that are $\equiv 1 \bmod 4$. Find all $p+1$ solutions of

$$
p=a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2},
$$

where $a_{0}$ is odd and positive, and $a_{1}, a_{2}, a_{3}$ are even.
Example: Let $p=5$. Then the solutions are

$$
(1, \pm 2,0,0),(1,0, \pm 2),(1,0,0, \pm 2)
$$

## The LPS Construction (Cont'd)

Let the group $G$ be $P G L\left(2, \mathbb{F}_{q}\right)$. Choose $\mathbf{i}$ such that $\mathbf{i}^{2} \equiv-1 \bmod q$. Define $S=\left\{M_{j}\right\}_{j=1}^{p+1}$, where

$$
M_{j}=\left[\begin{array}{cc}
a_{0 j}+\mathbf{i} a_{1 j} & a_{2 j}+\mathbf{i} a_{3 j} \\
-a_{2 j}+\mathbf{i} a_{3 j} & a_{0 j}-\mathbf{i} a_{1 j}
\end{array}\right] \bmod q, j=1, \ldots, p+1,
$$

Then the resulting Cayley graph satisfies the Ramanujan property of degree $p+1$ with $\left(q\left(q^{2}-1\right)\right) / 2$ vertices.

If $p \equiv x^{2} \bmod q$ for some $x(p$ is a quadratic residue of $q)$, then the graph consists of two disconnected components. Otherwise it is a balanced bipartite graph.

## LPS Construction with $p=37, q=13$



The graph is bipartite, because 37 it not a quadratic residue of 13 .

## LPS Construction with $p=257, q=17$


$36 \equiv 257 \bmod 17$, so the graph is disconnected.
M. Vidyasagar FRS

## Outline

(1) Ramanujan Graphs

- Some Basic Graph Theory
- Ramanujan Graphs and Ramanujan Bigraphs
(2) Construction of Ramanujan Graphs
- Cayley Graphs
- LPS Construction of Ramanujan Graphs
(3) Construction of Ramanujan Bigraphs
(4) The Matrix Completion Problem
- Problem Statement and Solution
- Fault-Tolerant Ramanujan Graphs


## Our Construction of Ramanujan Bigraphs

Until now, there has not been a single explicit construction of a Ramanujan bigraph!

Let $q$ be a prime number, and let $P$ denote the "right shift" permutation. Define the "array code" matrix

$$
B(q, l)=\left[\begin{array}{lllll}
I_{q} & I_{q} & I_{q} & \cdots & I_{q} \\
I_{q} & P & P^{2} & \cdots & P^{(q-1)} \\
I_{q} & P^{2} & P^{4} & \cdots & P^{2(q-1)} \\
I_{q} & P^{3} & P^{6} & \cdots & P^{3(q-1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
I_{q} & P^{(l-1)} & P^{3(l-1)} & \cdots & P^{(q-1)(l-1)}
\end{array}\right]
$$

The associated bipartite graph is $(q, l)$-biregular.

## Our Construction of Ramanujan Bigraphs (Cont'd)

(Doctoral research of Shantanu Prasad Burnwal.)

## Theorem

Suppose $l \leq q$. The matrix $B(q, l)$ has a singular value of $\sqrt{l q}$, $l(q-1)$ singular values of $\sqrt{q}$, and $l-1$ singular values of 0 . Therefore, whenever $2 \leq q-1, B(q, l)$ defines a Ramanujan bigraph. With $l=q$, this defines a (new class of) Ramanujan graphs.

## Our Construction of Ramanujan Bigraphs (Cont'd)

## Theorem

Suppose $l>q$.
(1) When $l \bmod q=0$, in addition $B$ has $(q-1) q$ singular values of $\sqrt{l}$ and $q-1$ singular values of 0 .
(2) When $l \bmod q \neq 0$, let $k=l \bmod q$. Then $B$ has, in addition, $(q-1) k$ singular values of $\sqrt{l+q-k}(q-1)(q-k)$ singular values of $\sqrt{l-k}$, and $q-1$ singular values of 0 .
Therefore, whenever $l>q, B(q, l)$ represents a Ramanujan bigraph.

## Reprise

We have constructed two explicit classes of Ramanujan bigraphs: Of dimensions $l q \times q^{2}$ where $q$ is a prime number and $2 \leq l \leq q$, and $q^{2} \times l q$ where $q$ is a prime number and $l>q$.

This is the first such construction.

## Outline

(1) Ramanujan Graphs

- Some Basic Graph Theory
- Ramanujan Graphs and Ramanujan Bigraphs
(2) Construction of Ramanujan Graphs
- Cayley Graphs
- LPS Construction of Ramanujan Graphs


## (3) Construction of Ramanujan Bigraphs

(4) The Matrix Completion Problem

- Problem Statement and Solution
- Fault-Tolerant Ramanujan Graphs


## Outline

(1) Ramanujan Graphs

- Some Basic Graph Theory
- Ramanujan Graphs and Ramanujan Bigraphs
(2) Construction of Ramanujan Graphs
- Cayley Graphs
- LPS Construction of Ramanujan Graphs
(3) Construction of Ramanujan Bigraphs
(4) The Matrix Completion Problem
- Problem Statement and Solution
- Fault-Tolerant Ramanujan Graphs


## Statement of the Matrix Completion Problem

Suppose $X \in \mathbb{R}^{m \times n}$ is unknown, but an upper bound $r$ on its rank is known.

Question: By measuring only $s \ll m n$ elements of $X$, can we "complete" the remaining elements?

Let

$$
\Omega=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{s}, j_{s}\right)\right\} \subseteq[m] \times[n]
$$

denote the "sampling set." (Note: $[n]=\{1, \ldots, n\}$.)
Question: By measuring $X_{i j},(i, j) \in \Omega$, can we determine $X$ uniquely?

## Solution via Nuclear Norm Minimization

Possible Approach: Solve

$$
\hat{X}=\underset{Z}{\operatorname{argmin}} \operatorname{rank}(Z) \text { s.t. } Z_{i j}=X_{i j}, \forall(i, j) \in \Omega .
$$

This problem is NP-hard!
Change the problem to

$$
\hat{X}=\underset{Z}{\operatorname{argmin}}\|Z\|_{N} \text { s.t. } Z_{i j}=X_{i j}, \forall(i, j) \in \Omega,
$$

where $\|Z\|_{N}$ is the nuclear norm of $Z$, i.e., the sum its singular values. $\|\cdot\|_{N}$ is the "convex relaxation" of the rank - the largest convex function that is everywhere dominated by the rank.

This problem is easy to solve. But when does its solution equal the unknown matrix $X$ ?

## Sketch of Solution

Choose $\Omega$ to be the edge set of a $\left(d_{r}, d_{c}\right)$-biregular Ramanujan bigraph. That is, after constructing the graph, sample $X_{i j}$ if and only if vertex $v_{i} \in \mathcal{V}_{r}$ is connected to $v_{j} \in \mathcal{V}_{c}$.
So only $d_{r} / m=d_{c} / n$ elements are sampled.
Then, under suitable conditions, nuclear norm minimization recovers the unknown matrix exactly provided $\min \left\{d_{r}, d_{c}\right\}=O\left(r^{3}\right)$.

## Conservatism of Solution

This is the first result on matrix completion using a deterministic sampling pattern $\Omega$.

This sufficient condition is awfully conservative! How close is it to being necessary?

Answer: Not at all close! Numerical simulations with randomly generated low-rank mmatrices show that

$$
r \approx(1 / 3) \min \left\{d_{r}, d_{c}\right\}
$$

is the true condition. But no proofs as yet!

## Outline

(1) Ramanujan Graphs

- Some Basic Graph Theory
- Ramanujan Graphs and Ramanujan Bigraphs
(2) Construction of Ramanujan Graphs
- Cayley Graphs
- LPS Construction of Ramanujan Graphs
(3) Construction of Ramanujan Bigraphs
(4) The Matrix Completion Problem
- Problem Statement and Solution
- Fault-Tolerant Ramanujan Graphs


## Motivation: Missing Measurements

When applying sampling methods to "real" data, we sometimes find that some measurements are "missing."

After choosing $\Omega$ to be the edge set of a Ramanujan bigraph, what to do if some elements are "missing" ?

Define the set of "missing" measurements $M \in\{0,1\}^{m \times n}$, such that if $M_{i j}=1$, then it is not possible to measure $X_{i j}$.

Question: Can we "perturb" the original Ramanujan graph so as to avoid any pairs $(i, j)$ where $M_{i j}=1$, and still remain a Ramanujan graph with the same degrees?

## Main Result

## Theorem

Suppose that every row and every columm of $M$ has no more than $p$ entries of one. Define $E \in\{0,1\}^{m \times n}$ to be the biadjacency matrix of the Ramanujan bigraph, and let $\theta_{c}$ denote the maximum inner product between any two columns of $E$. Then it is possible to perturb the Ramanujan bigraph provided

$$
2 p \leq n-d_{r}, d_{c}-\theta_{c} .
$$

So, provided not too many elements are "missing" in any one row or one column, it is possible to perturb a Ramanujan graph into another one.

## Questions?

