THE INDUCTION PRINCIPLE

MANJIL P. SAIKIA¹ DEPARTMENT OF MATHEMATICAL SCIENCES, TEZPUR UNIVERSITY, INDIA

1. The Fibonacci sequence is defined by $F_0 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n, n \ge 0$. Prove the following properties related to it:

- $F_n = \frac{\alpha^n \beta^n}{\sqrt{5}}$, where $\alpha = \frac{1 + \sqrt{5}}{2}$, $\beta = \frac{1 \sqrt{5}}{2}$. $F n = \binom{n-1}{0} + \binom{n-2}{1} + \binom{n-3}{2} + \cdots$. $\sum_{i=1}^n F_i^2 = F_n F_{n+1}$. $F_{n-1}F_{n+1} = F_n^2 + (-1)^n$. $F_1 + F_2 + \cdots + F_n = F_{n+2} 1$.

- $F_1 + F_3 + \dots + F_{2n+1} = F_{2n+2}, 1 + F_2 + F_4 + \dots + F_{2n} = F_{2n+1}.$
- $F_nF_{n+1} F_{n-2}F_{n-1} = F_{2n-1}, F_{n+1}F_{n+2} F_nF_{n+3} = (-1)^n.$ $F_nF_{n+1} F_n 2F_{n-1} = F_{2n-1}, F_{n+1}F_{n+2} F_nF_{n+3} = (-1)^n.$ $F_{n-1}^2 + F_n^2 = F_{2n-1}, F_n^2 + 2F_{n-1}F_n = F_{2n}, F_n(F_{n+1} + F_{n-1}) = F_{2n}.$ $F_1F_2 + F_2F_3 + \dots + F_{2n-1}F_{2n} = F_{2n}^2.$ $F_n^3 + F_{n+1}^3 F_{n-1}^3 = F_{3n}.$ $If m \mid n, then F_m \mid F_n.$

- $(F_m, F_n) = F_{(m,n)}$.
- Let t be the positive root of $t^2 = t + 1$, then $t = 1 + \frac{1}{t}$, from which follows the continued fraction expansion

$$t = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}}$$

with the convergents

$$t_1 = 1, t_2 = 1 + \frac{1}{1}, \dots$$

then,
$$t_n = \frac{F_{n+1}}{F_n}$$
.
• $\sum_{i=1}^{\infty} \frac{1}{F_n} = 4 - t$, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{F_n F_{n+1}} = t - 1$, $\prod_{n=2}^{\infty} (1 + \frac{(-1)^n}{F_n^2}) = t$.

2. Show by induction that $f(n) = \sum_{k=0}^{n} \binom{n+k}{k} \frac{1}{2^k} = 2^n$.

3. Prove that for any natural N,
$$\sqrt{m\sqrt{(m+1)\sqrt{\dots\sqrt{N}}}} < m+1$$
.

4. We build the exponential tower $X = \sqrt{2}^X$ by defining $a_0 = 1$ and $a_{n+1} =$ $\sqrt{2}^{a_n}, n \geq 0$. Show that the sequence a_n is increasing monotonically and bounded $above \ by \ 2.$

¹Email: manjil@gonitsora.com

5. *n* circles are given in the plane. They divide the plane into parts. Show that you can close the plane with two colours, so that no parts with a common boundary line are coloured the same way. Such a colouring is called a proper colouring.

6. Find a closed from for the expression with n radicals defined as

$$a_n = \sqrt{2 + \sqrt{2 + \dots + \sqrt{2 + \sqrt{2}}}}.$$

7. Let $\alpha \in \mathbb{R}$ such that $\alpha + \frac{1}{\alpha} \in \mathbb{Z}$. Show that $\alpha^n + \frac{1}{\alpha^n} \in \mathbb{Z}$, for any $n \in \mathbb{N}$.

8. Prove that

$$1 < \frac{1}{n+1} + \dots + \frac{1}{3n+1} < 2.$$

9. Prove that

$$(n+1)(n+2)\cdots 2n = 2^n \cdot 1 \cdot 3 \cdot 5 \cdots \cdot (2n-1),$$

for all $n \in \mathbb{N}$.

10. Prove that if $z + \frac{1}{z} = 2 \cos \alpha$ then, $z^n + \frac{1}{z^n} = 2 \cos n\alpha$, $\forall n \in \mathbb{N}$.

11. Consider all possible subsets of the set $\{1, 2, ..., N\}$, which do not contain any neighbouring points P. Prove that the sum of the squares of the products of all numbers in these subsets is (N + 1)! - 1.

12. Let a_1, a_2, \ldots, a_n be positive integers such that $a_1 \leq a_2 \ldots \leq a_n$. Prove that if $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = 1$, then $a_n = 2^{n!}$.

13. Prove that $3^{n+1} \mid 2^{3^n} + 1, \forall n \ge 0$.

14. Let $n = 2^k$, prove that we can select an integer from any (2n-1) integers such that their sum is divisible by n.

15. Prove that all numbers of the form $1007, 10017, 10117, \ldots$ are divisible by 53.

16. Prove that all numbers of the form $12008, 120308, 1203308, \ldots$ are divisible by 19.

17. Let x_1, X_2 be the roots of the equation $x^2 + px - 1 = 0$, p odd and set $y_n = x_1^n + x_2^n$, $n \ge 0$, then prove that y_n and y_{n+1} are coprime integers.

18. Prove that the cube of any integer can be written as the difference of two squares.