Functional Equations

Manjil P. Saikia Department of Mathematical Sciences Tezpur University Napaam, Pin 784028 India manjil@gonitsora.com

January 24, 2014

Pre INMO Training Camp, Gauhati University/NEHU Shillong

- 1. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that
 - (a) f(2) = 2;
 - (b) f(mn) = f(m)f(n) for all $m, n \in \mathbb{N}$;
 - (c) f(m) < f(n) for m < n.
- 2. Replace (b) in the above by f(mn) = f(m)f(n) for all $m, n \in \mathbb{N}$ such that gcd(m, n) = 1 and then solve for f.
- 3. Replace (a) in the above by f(2) = 3 and see what happens?
- 4. What happens if there is no (c) in the above?
- 5. (IMO 1997) If $f: \mathbb{N} \to \mathbb{N}$ is such that f(n+1) > f(f(n)) for all $n \in \mathbb{N}$, prove that f(n) = n for all $n \in \mathbb{N}$.
- 6. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that f(f(m) + f(n)) = m + n for all $m, n \in \mathbb{N}$.
- 7. (IMO 1998) Consider all functions $f: \mathbb{N} \to \mathbb{N}$ satisfying $f(m^2 f(n)) = n(f(m))^2$ for all $m, n \in \mathbb{N}$. Determine the least possible value of f(1998).
- 8. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that f(m+n) + f(mn-1) = f(m)f(n) + 2 for all $m, n \in \mathbb{Z}$.
- 9. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that f(m+n) + f(mn) = f(m)f(n) + 1 for all $m, n \in \mathbb{Z}$.
- 10. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that f(m+n) + f(mn-1) = f(m)f(n) for all $m, n \in \mathbb{Z}$.
- 11. Determine all functions $f: \mathbb{Z} \setminus \{0,1\} \to \mathbb{R}$ which satisfy $f(x) + f(\frac{1}{1-x}) = \frac{2(1-2x)}{x(1-x)}$ valid for all $x \neq 0$ and $x \neq 1$.
- 12. Let $f \colon \mathbb{R} \to \mathbb{R}$ be a function such that
 - (a) f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$,
 - (b) $f(\frac{1}{x}) = \frac{f(x)}{x^2}$ for all $x \neq 0$.

Prove that f(x) = cx for all $x \in \mathbb{R}$ for some constant c.

- 13. (IMO 1992) Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x^2 + f(y)) = f(x)^2 + y$ for all $x, y \in \mathbb{R}$.
- 14. Find all functions $f \colon \mathbb{R} \to \mathbb{R}$ which satisfy $f(xf(x) + f(y)) = f(x)^2 + y$ for all $x, y \in \mathbb{R}$.

- 15. Find all functions $f \colon \mathbb{R} \to \mathbb{R}$ such that $f(f(x) + y) = f(x^2 y) + 4f(x)y$ for all $x, y \in \mathbb{R}$.
- 16. (Nordic Contest 1998) Find all functions $f: \mathbb{Q} \to \mathbb{Q}$ such that f(x+y) + f(x-y) = 2f(x) + 2f(y) for all $x, y \in \mathbb{Q}$.
- 17. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function such that
 - (a) f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$,
 - (b) f is monotonic in \mathbb{R} .

Prove that f is linear, that is there exist a constact c such that f(x) = cx for all $x \in \mathbb{R}$.

18. Let $n \ge 2$ be a fixed integer. Determine all bounded functions $f: (0, a) \to \mathbb{R}$ which satisfy

$$f(x) = \frac{1}{n^2} \left\{ f\left(\frac{x}{n}\right) + f\left(\frac{x+a}{n}\right) + \dots + f\left(\frac{x+(n-1)a}{n}\right) \right\}$$

19. Find all strictly monotone functions $f \colon \mathbb{R} \to \mathbb{R}$ satisfying the functional equation

$$f(f(x) + y) = f(x + y) + f(0)$$

for all $x, y \in \mathbb{R}$.

20. Find all continous functions $f: \mathbb{R} \to \mathbb{R}_0$ such that f(x+y) = f(x) + f(y) + f(x)f(y) for all $x, y \in \mathbb{R}$.

References

- [1] B. J. Venkatachala, Functional Equations: A Problem Solving Approach, Prism Books Pvt. Ltd., 2002
- [2] http://www.manjilsaikia.in/olympiads