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Abstract

These are the sketch notes of the lectures delivered at Darrang College, Tezpur in July 2014 to Olympiad
enthusiasts.

1 Lecture 1

The theory of numbers is a beautiful discipline of study in mathematics. It mainly concerns with the properties
of integers and how they interplay with various other things. The modern study of numbers began with the
publication of the classic book by Gauss, Discourses in Arithmetics. The subject has a rich history since time
immemorial and has been studied by some of the greatest names of antiquity like Euclid, Pythagoras, etc. In
these course of lectures, we shall attempt to give a very brief introduction to the theory of numbers from an
Olympiad standpoint. We do not survey all of number theory, but only the very basic parts. The reader who is
interested in pursuing the subject further may consult the beautiful textbooks [1] and [4]. For more problems,
they may look into [2] and [3].

Before beginning our study, we fix the following notations. We denote by N the set of natural numbers, by
Z the set of integers and by Z+ the set of all positive integers. We shall also employ the factorial notation n!

to denote the product of the first n natural numbers and the binomial coefficient
(
n
r

)
to denote

n!

r!(n− r)!
.

The study of any subject begins with some prerequisites and in this lecture we shall study a few results that
shall be useful to us in our further study.

We begin with the following principle called the Well Ordering Principle (WOP), which states that
every nonempty set S of nonegative integers contains a least element. This principle will be used to prove a few
results as demonstrated below.

Proposition 1.1 (Archimedean Principle). If a, b ∈ Z+, then there exists n ∈ N such that na ≤ b.

Proof. We assume that na < b for all such values of a, b and n. Then the elements of S = {b−na | n ∈ N} are all
positive. So by the WOP, S has a least element, say b−ma. Also, b−ma ∈ S, so we have b− (m+1)a < b−ma
and hence this contradicts the minimality of b − ma. This, our initial assumption is wrong and hence this
completes the proof.

We now state and prove a result which has immense application and importance in all of mathematics,
specially so in number theory.

∗International Centre for Theoretical Physics

1



Notes on Number Theory – Manjil P. Saikia 2

Theorem 1.2 (First principle of mathematical induction). Let S be a set of positive integers such that the
following holds

1. 1 ∈ S, and

2. If k ∈ S, then k + 1 ∈ S.

Then S = N.

Proof. Let T be the set of all positive integers not in S, and let T be non-empty. Then by WOP we have a least
element in T , say a. Since 1 ∈ S, so a > 1 and hence 0 < a − 1 < a. Hence a − 1 ∈ S. Thus, S must contain
(a− 1) + 1 = a also. So our assumption that T is non-empty is wrong. Hence T = φ and so S = N.

As an example, we have the following.

Example 1.3.

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

Proof. Putting n = 1 in the above formula, we see that it is correct. So 1 is in the set of positive integers for
which this formula holds. Now, we assume that the formula holds for some k, that is

1 + 2 + · · ·+ k =
k(k + 1)

2
.

Adding k+1 to both the sides of the above formula and after some algebraic simplification, we get the following

1 + 2 + · · ·+ k + (k + 1) =
(k + 1)(k + 2)

2
.

Hence the formula is verified for all n ∈ N by Theorem 1.2.

There is another version of Theorem 1.2 which is stated below.

Theorem 1.4 (Second principle of mathematical induction). Let S be a set of positive integers such that the
following holds

1. 1 ∈ S, and

2. If 1, 2, . . . , k ∈ S, then k + 1 ∈ S.

Then S = N.

The following exercises will give some idea of how to use the two forms of mathematical induction. In each
case, prove the identities stated.

Exercise 1.5.

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Exercise 1.6.

13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4
.

Exercise 1.7.
1 + 2 + 22 + · · ·+ 2k−1 + 2k = sk+1 − 1.

Exercise 1.8 (Lucas’ Sequence). We define the sequence a1 = 1, a2 = 3 and an = an−1 + an−2 for all n > 2.
Prove that an <

7n

4n .

Exercise 1.9 (Bernoulli’s Inequality). If 1 + a > 0, then prove that (1 + a)n ≥ 1 + na.

Exercise 1.10. Prove that for n ≥ 1, 2.6.10.14. . . . .(4n− 2) = (2n)!
n! . Hence or otherwise, prove that 2n(n!)2 ≤

(2n)! for all n ≥ 1.
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We shall now state another result, first proved by Sir Issac Newton that is of paramount importance in
elementary number theory below.

Theorem 1.11 (Binomial Theorem). For a, b ∈ R and n ∈ N, we have

(a+ b)n =

(
n

0

)
anb0 +

(
n

1

)
an−1b1 +

(
n

2

)
an−2b2 + · · ·+

(
n

n− 1

)
an−(n−1)bn−1 +

(
n

n

)
an−nbn

or

(a+ b)n = an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + · · ·+

(
n

n− 1

)
abn−1 + bn. (1.1)

The result is not very difficult to prove, and we leave the proof of this theorem as an exercise.
The following problems can be done using Theorem 1.11 or otherwise. In each case, prove the identity.

Exercise 1.12 (Newton). (
n

k

)(
k

r

)
=

(
n

r

)(
n− r
k − r

)
.

Exercise 1.13 (Pascal). (
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
.

Example 1.14. (
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
= 2n.

Proof. We put a = 1 = b in (1.1) to get the above identity.

Exercise 1.15. (
n

0

)
−
(
n

1

)
+ · · ·+ (−1)n

(
n

n

)
= 0.

Exercise 1.16. (
n

1

)
+ 2

(
n

2

)
+ · · ·+ n

(
n

n

)
= n2n−1.

We now come to a very important and fundamental result which we have been using since our primary
school in various ways.

Theorem 1.17 (Division Algorithm). Given a, b ∈ Z with b > 0, there exists unique integers q and r satisfying
a = qb+ r with 0 ≤ r < b.

Proof. Let S = {a− xb | x ∈ Z, a− xb ≥ 0}. We now show that S is non-empty.
Since b ≥ 1 we have |a| b ≥ |a| and so a− (− |a|)b ≥ a+ |a| ≥ 0. Thus for x = − |a|, a− xb ∈ S and hence S

is non-empty.
Now, by the WOP, S has a least element say r. So, r = a − qb, where r ≥ 0. Let if possible r ≥ b, then

a− (q+ 1)b = (a− qb)− b = r− b ≥ 0. So, a− (q+ 1)b ∈ S. But a− (q+ 1)b < r and hence is a contradiction.
So, r < b.

Now suppose that a = qb + r = q′ + r′, where 0 ≤ r < b and 0 ≤ r′ < b. Then r − r′ = b(q − q′) and
|r′ − r| = b |q − q′|. We then get, −b < −r ≤ 0 and 0 ≤ r′ < b and hence −b < r′ − r < b which implies
|r′ − r| < b and hence b |q − q′| < b. So, 0 ≤ |q − q′| < 1.

Thus, |q − q′| = 0 and hence q = q′, r = r′.

The following exercises uses the Division Algorithm in one form or the other.

Exercise 1.18. Show that a(a2 + 2)/3 is an integer for all a ≥ 1.

Exercise 1.19. Prove that 3a2 − 1 is never a perfect square.

Exercise 1.20. Show that if n is an odd integer, then n4 + 4n2 + 11 is of the form 16k.

Exercise 1.21. Prove that n(n+ 1)(2n+ 1)/6 is always an integer for all n ∈ N.
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2 Lecture 2

In this lecture, we shall study about the greatest common divisor and its properties. We have already encoun-
tered the greatest common divisor or gcd in our school in the form of highest common factor. We shall use the
notation (a, b) to denote the gcd of a and b and so on. Before going into it, let us fix the notation a|b to mean
that a divides b. We also have the following very easy properties that shall be used repeatedly.

Proposition 2.1. If a|b and a|c, then a divides any linear combination of b and c. Also, if a|b, then b = aq for
some integer q and hence a ≤ b.

Definition 2.2 (Greatest Common Divisor). The greatest common divisor of two integers a and b is said to be
d if d|a, d|b and for any c such that c|a, c|b, we have c ≤ d. And we write (a, b) = d.

The above definition can be easily extended to more than two numbers. If (a, b) = 1, then we say that a
and b are co-prime to one another.

We have the following very important result for gcd function.

Theorem 2.3. Given integers a and b, there exists integers x and y such that (a, b) = ax+ by.

Proof. Let S = {au + bv | au + bv ≥ 0;u, v ∈ Z}. Clearly S is non-empty, so by the WOP let d = ax + by be
the least element of S. We claim that d = (a, b).

By the Division ALgorithm, we have for some q and r, a = qd+ r, where 0 ≤ r < d. Hence

r = a− qd = a− q(ax+ by) = a(1− qx) + b(−qy).

If r > 0, then r ∈ S contradicting that d is the least element of S. So, r = 0 and hence a = qd so that d|a.
Similarly, we can show that d|b.

Now, if there is a c such that c|a and c|b, then c|(ax+by) and so c ≤ d. Thus, d = (a, b) and we are done.

The following results are immediate from the above theorem.

Theorem 2.4. For any two integers a and b, (a, b) = 1 if and only if ax+ by = 1 for some x, y ∈ Z.

Corollary 2.5. If (a, b) = d, then (a/d, b/d) = 1.

Lemma 2.6 (Euclid). If a|bc and (a, b) = 1, then a|c.

The following exercises uses the results described in this section.

Exercise 2.7. Show that 12|(a2 + (a+ 2)2 + (a+ 4)2 + 1).

Exercise 2.8. Show that 6|a(a2 + 11) for any a ∈ N.

Exercise 2.9. Show that 24|a(a2 − 1) for any odd a ∈ N.

Example 2.10. Show that the product of four consecutive integers is one less than a perfect square.

Proof. Let the four consecutive numbers be a, a+ 1, a+ 2 and a+ 3. Then we have

a(a+ 1)(a+ 2)(a+ 3) = (a2 + 3a)(a2 + 3a+ 2)

= (a2 + 3a)2 + 2(a2 + 3a).

It is now a matter of simple algebra to complete the example.

Exercise 2.11. Prove that the sum of the squares of two odd integers cannot be a perfect square.

Exercise 2.12. Show that (2a+ 1, 9a+ 4) = 1.

Example 2.13. If a|(b+ c), is it true that a|b or a|c?

No, since 5|(3 + 2) and so on.
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Exercise 2.14. If (a, b) = 1, then show that (a+ b, a− b) is either 1 or 2.

Exercise 2.15. If d|n, then show that 2d − 1|2n − 1.

We are now in a position to state and prove another very interesting result called the Euclidean Algorithm.
But before that we have the following simple lemma.

Lemma 2.16. If a = bq + r for some integers a, b, q and r, where 0 ≤ r < b then we have (a, b) = (b, r).

Proof. The proof is very straightforward and is left as an exercise.

Theorem 2.17 (Euclidean Algorithm). Given apair of integers a and b, we can get a set of equations as follows

a = qb+ r, 0 ≤ r < b

b = rq1 + r1, 0 ≤ r1 < r

r = r1q2 + r2, 0 ≤ r2 < r1

(2.2)

...

rn = rn−1qn.

Then (a, b) = rn−1.

Proof. This is a straightforward application of Lemma 2.16 and the proof is left as an exercise.

The following is a beautiful application of the Euclidean Algorithm. This problem appeared in the first
International Mathematical Olympiad (IMO) held in 1959 at Romania.

Exercise 2.18 (IMO (1959)). For every integer n prove that
21n+ 4

14n+ 3
cannot be reduced any further.

3 Lecture 3

In this lecture, we shall study something about the structure of numbers and see why prime numbers are so
important in mathematics. Infact, the study of prime numbers and the way in which they are distributed is
the sole purpose of analytic number theory, a branch of number theory that uses complex analysis to derive
results. We begin with a result which is so important that it has been called the Fundamental Theorem of
Arithmetic.

Theorem 3.1 (Fundamental Theorem of Arithmetic). Every positive integer n > 1 can be expressed as a
product of primes, this representation is unique, apart from the order in which the factors occur.

Proof. Either n is a prime or a composite. If it is a prime, then we have nothing to prove. So, we assume that
n is composite. Then, there is some d such that d|n and 1 < d < n. We can choose the smallest such d by the
WOP and say it is p1. Then p1 must be a prime else it would alse have some divisor q which will divide n also
and thus contadict the minimality of p1. So, we may write n = p1n1. Now we, repeat the process for n1 and
so on to get a representation of n as a product of some primes or powers of primes. The first part of the result
now follows.

To prove the uniqueness part, we suppose that there are two such possible representations, and then it
is an easy exercise to show that each prime in one representation corresponds to some prime in the other
representation.

Thus, we see that the prime numbers are the building blocks of all the integers and hence they are of utmost
importance in number theory and in fact in all of mathematics. As a consequence of the above, we shall prove
a remarkable result.

Theorem 3.2 (Euclid). There are infinitely many primes.
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Proof. Suppose, there were only finitely many primes say p1, p2, . . . , pk. Then we have a number

N + p1p2 · · · pk + 1.

It is clear that neither of the pi divides N for i = 1, 2, . . . , k. So, either N is itself a new prime number, or some
other prime not in our list divides N . Thus, we see that our list is incomplete and hence repeating this process
over and over again will give us infinitely many primes.

Using the fundamental theorem of arithmetic, we can now have the following result for two integers a and b.

Proposition 3.3. For a = pa1
1 p

a2
2 · · · p

ak

k and b = pb11 p
b2
2 · · · p

bk
k where some of the pi’s can be zero, we have

(a, b) = p
min(a1,b1)
1 p

min(a2,b2)
2 · · · pmin(ak,bk)

k

and
[a, b] = p

max(a1,b1)
1 p

max(a2,b2)
2 · · · pmax(ak,bk)

k ,

where [a, b] denotes the lowest common multiple of a and b.

Proof. The proof is left as an exercise.

The problem of determining which number is a prime number has left mathematicians baffled for centuries.
One of the first methods derived to find out which numbers upto and including a particular number is prime
was first given by Eratosthenes and is called the Sieve of Eratosthenes. In this method, first we list all the
numbers from 1 to n, then we cross out 1 since it is not a prime, and then keep the next number and cross
out all its multiples. After this is done, we keep the next uncrossed number and cross out all it multiples. We
keep on repeating this process untill no more crossing out is possible. The numbers that remains are the prime
numbers upto and including n.

Theorem 3.4 (Pythagoras).
√

2 is irrational.

Proof. Suppose
√

2 is rational, say
√

2 = a
b , then 2b2 = a2. This implies that 2|a, because here we have implicitly

assumed (a, b) = 1. Thus, a = 2k for some integer k. So, we now have b2 = 2k2 and hence by a similar logic
2|b, which shows that (a, b) is not one. Thus our assumption that

√
2 is irrational is wrong and hence we have

the result.

The following exercises can be done using some of the techniques of this section or some of the techniques
that the reader may have learned in school.

Exercise 3.5. Prove that any prime of the form 3m+ 1 is also of the form 6m+ 1.

Exercise 3.6. How many zeroes are there at the end of 2014!?

Exercise 3.7. Prove that every integer of the form n4 + 4 for n > 1 is composite.

Exercise 3.8. Show that 5 is the only prime of the form n2 − 4.

Exercise 3.9. Show that any integer can be written as n = 2km for k ≥ 0 and odd m.

Exercise 3.10. Prove that
√
p is irrational for any prime p.

There is an important class of functions called arithmetic functions that appear in number theory. We shall
not discuss these functions here, except the following two examples; but the interested reader can look into [1]
for more details.

Exercise 3.11. We define the arithmetic function τ(n) to be the number of factors of n. Show that

τ(n) = (a1 + 1)(a2 + 1) · · · (ak + 1)

for n = pa1
1 p

a2
2 · · · p

ak

k .

Exercise 3.12. We define the arithmetic function σ(n) to be the sum of the divisors of n. Show that

σ(n) = (1 + p1 + p21 + · · ·+ pa1
1 )(1 + p2 + p22 + · · ·+ pa2

2 ) · · · (1 + pk + p2k + · · ·+ pak

k )

for n = pa1
1 p

a2
2 · · · p

ak

k .
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4 Lecture 4

In this lecture, we shall study about congruences and a few of their properties. The idea of congruences was
first put forward by the great mathematician Carl F. J. Gauss in his book Disquisitiones Arithmeticae which
he wrote when he was just 24 years old.

Definition 4.1. Let n be a fixed positive integer and two integers a and b are said to be congruent to each other
modulo n if n|(a− b) and we write it as a ≡ b (mod n).

An easy consequence of the above definition is the following theorem, the proof of which is left as an exercise.

Theorem 4.2. For arbitary integers a and b, a ≡ b (mod n) if and only if a and b leave the same remainder
when divided by n.

We also have the following basic properties of congruences.

Proposition 4.3. Let n > 1 be fixed and a, b, c, d be arbitary integers. Then the following properties hold:

1. a ≡ a (mod n),

2. If a ≡ b (mod n) then b ≡ a (mod n),

3. If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n),

4. If a ≡ b (mod n) and c ≡ d (mod n), then a+ c ≡ b+ d (mod n) and ac ≡ bd (mod n),

5. If a ≡ b (mod n), then a+ c ≡ b+ c (mod n) and ac ≡ bc (mod n), and

6. If a ≡ b (mod n), then ak ≡ bk (mod n) for any positive integer k.

The proof of the above is very easy, we shall just show the proof of (3) in the above and the rest is left as
an exercise.

Proof. Suppose a ≡ b (mod n) and also m ≡ c (mod n). Then there exists integers h and k satisfying a−b = hn
and b− c = kn. It follows that a− c = (a− b) + (b− c) = (h+ k)n and hence a ≡ c (mod n).

Exercise 4.4. Find the remainder when 1! + 2! + 3! + · · ·+ 100! is divided by 12.

Exercise 4.5. Show that 41 divides 220 − 1.

Theorem 4.6. If ca ≡ cb (mod n), then a ≡ b (mod n/d), where d = (c, n).

Proof. We have c(a− b) = kn for some integer k. If (c, n) = d, then there exists some relatively prime integers
r and s such that c = dr and n = ds. Thus, we have r(a− b) = ks. Hence s|r(a− b) and (r, s) = 1. So Lemma
2.6 yields s|(a− b) which is nothing but what we wanted.

The following are some easy consequences of the above theorem.

Corollary 4.7. If ca ≡ cb (mod n) and (c, n) = 1, then a ≡ b (mod n).

Corollary 4.8. If ca ≡ cb (mod p) and p does not divide c where p is a prime number, then a ≡ b (mod p).

Exercise 4.9. What is the remainder when the following sum is divided by 4?

15 + 25 + · · ·+ 995 + 1005

Exercise 4.10. If p is a prime satisfying n < p < 2n, then show that(
2n

n

)
≡ 0 (mod p).

Now, we shall discuss two very important results in the theory of congruences and then end our course.
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Theorem 4.11 (Fermat’s Little Theorem (FLT)). Let p be a prime and suppose that p does not divide a. Then
ap−1 ≡ 1 (mod p).

Corollary 4.12. If p is a prime, then ap ≡ a (mod p) for any integer a.

The proof of the above theorem is not very difficult, but we omit it here for lack of time. The proof can be
found in [1].

Exercise 4.13. If p and q are distinct primes, then prove that

pq−1 + qp−1 ≡ 1 (mod pq).

Exercise 4.14. Prove that 22225555 + 55552222 ≡ 0 (mod 7).

Exercise 4.15. Prove that for any integer n, 13|(1112n+6 + 1).

Exercise 4.16. If p is an od prime, then prove that

1p + 2p + · · ·+ (p− 1)p ≡ 0 (mod p).

The next important result is the following.

Theorem 4.17 (Wilson). If p is a prime, then (p− 1)! ≡ −1 (mod p).

The proof is a little more involved than the proof of Theorem 4.11 and the interested reader can consult [1]
for a proof of Theorem 4.17.

Exercise 4.18. Determine whether 17 is a prime using Theorem 4.17.

Exercise 4.19. Verify that 4(29)! + 5! is divisible by 31.

Exercise 4.20. Given any prime number p, prove that

(p− 1)! ≡ p− 1 (mod 1 + 2 + 3 + · · ·+ (p− 1)).

Exercise 4.21. If p is a prime, prove that for any integer a, p|(ap + (p− 1)!a) and p|((p− 1)!ap + a).

5 Problems

In this section, we list a few problems without solution which uses some of the techniques that we have discussed
so far. It must be however noted that some of the problems may be quite difficult and the reader is advised not
to get frustrated if he or she is unable to solve a problem in the first attempt. Some of the problems can be
found in the references listed below and may use techniques which have not been discussed so far.

Exercise 5.1. • Find all natural numbers n for which 7 divides 2n − 1.

• Prove that there is no natural number n for which 7 divides 2n + 1.

Exercise 5.2. Prove that for each positive integer n, there are pairwise relatively prime integers k0, k1, . . . , kn,
all strictly greater than 1, such that k0k1 · · · kn − 1 is the product of two consecutive integers.

Exercise 5.3. Determine the values of the positive integer n for which√
9n− 1

n+ 7

is rational.

Exercise 5.4. Suppose a, b are integers satisfying 24a2 + 1 = b2. Prove that exactly one of a, b is divisible by
5.
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Exercise 5.5. Let x = abcd be a 4-digit number such that the last 4 digits of x2 are also abcd. Find all possible
values of x.

Exercise 5.6. Let a and b be positive integers and let u = a + b and v = lcm(a, b). Prove that

gcd(u, v) = gcd(a, b).

Exercise 5.7. Determine the units digit of the numbers a2, b2 and ab (in base 10), where

a = 22002 + 32002 + 42002 + 52002

and
b = 31 + 32 + 33 + · · ·+ 32002.

Exercise 5.8. Let p be an odd prime. Let k be a positive integer such that
√
k2 − pk also a positive integer.

Find k.

Exercise 5.9. An integer n > 1 has the property, that for every (positive) divisor d of n, d + 1 is a divisor of
n + 1. Prove that n is prime.

Exercise 5.10. Let N be the number of ordered pairs (x, y) of integers such that

x2 + xy + y2 ≤ 2007.

Prove that N is odd.

Exercise 5.11. Given a finite set P of prime numbers, there exists a positive integer x such that it can be
written in the form ap + bp (a, b are positive integers), for each p ∈ P , and cannot be written in that form for
each p not in P .

Exercise 5.12. (Primitive Pythagoras Triangles) Let x, y, z ∈ N with x2 + y2 = z2, gcd(x, y) = 1, and x ≡
0 (mod 2) Then, there exists positive integers p and q such that gcd(p, q) = 1 and

(x, y, z) =
(
2pq, p2 − q2, p2 + q2

)
.

Exercise 5.13. The equation x4 + y4 = z2 has no solution in positive integers.

Exercise 5.14. Let a and b be positive integers. Show that if 4ab− 1 divides
(
4a2 − 1

)2
, then a = b.

Exercise 5.15. Let N = {1, 2, 3, · · · } denote the set of positive integers. Find all functions f : N → N such
that for all m, n ∈ N: f(2) = 2, f(mn) = f(m)f(n), f(n+ 1) > f(n).

Exercise 5.16. Is 4545 + 5454 a prime?

Russia

Exercise 5.17. If n > 1, then prove that n4 + 4n is never a prime.

Kürschak, 1978

Exercise 5.18. Can a number, A consisting of 600 sixes and some zeroes be a square?

Exercise 5.19. Prove that the equation 15x2 − 7y2 = 9 has no integral solutions.

Exercise 5.20. Show that the equation x2 + y2 + z2 = 2xyz has no integral solutions except x = y = z = 0.

Exercise 5.21. Prove that a number with 3n equal digits is divisible by 3n.

Exercise 5.22. How many zeroes are at the end of 2012!?

Exercise 5.23. Prove that 1000 . . . 001 with 1961 zeroes is composite.

Exercise 5.24. If n ∈ N and 3n+ 1 and 4n+ 1 are perfect squares, then prove that 56 | n.
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Exercise 5.25. Given seven distinct integers that add up to 100, prove that some three of them add upto at
least 50.

Exercise 5.26. Consider 2n distinct positive integers a1, a2, . . . , a2n not exceeding n2, where n > 2. Prove that
some three of the differences ai − aj are equal.

Exercise 5.27. Consider seven distinct positive integers not exceeding 1706. Prove that there are three of them
say a, b, c such that a < b+ c < 4a.

Exercise 5.28. Prove that for every positive integer m, there is a positive integer n such that m + n + 1 is a
perfect square and mn+ 1 is a perfect cube.

Exercise 5.29. Show that (2m)!(2n)!
(m+n)!m!n! is an integer.

Exercise 5.30. Prove that 3641 + 4136 is divisible by 77.

6 Concluding Remarks

In these lecture notes, an attempt has been made to show some of the theory and applications of elementary
number theory. Since number theory is a vast subject so it is not possible to show all the beauties of the subject
is just four lectures. The choice of the material that is presented here is purely at the discretion of the author
and in no way reflects the sort of things that attract the attention of number theorists. However, it is believed
that with this background, any interested reader can pursue the subject further on his own. For the reader
who wants to know more about the subject, a good starting place is [1] and if he wants to know more advanced
topics then the author’s favourite book is [4]. For the sort of problems that appear in mathematical olympiads,
a good place to look for is [2] and [3]. The author’s website [5] also contains lot of problems and materials for
olympiad students.
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[3] P. J. Mahanta and M. P. Saikia, The Pursuit of Joy, Volume I, LAP Lambert Academic Publishing,
Germany, 2011.

[4] M. B. Nathanson, Methods in Number Theory, GTM 195, Springer, 2000.

[5] M. P. Saikia, http://www.manjilsaikia.in/olympiads/, 2013 – 2014.


