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Preface
Mathematical Olympiad activities have been going on all over the

world for more than a 100 years now. In India too it started more
than 25 years ago, and in Assam, the Assam Academy of Mathematics
has been organizing state level mathematical olympiads for more than
two decades now. Olympiad problems have a beauty and originality
that is often not encountered in a textbook stereotype problem. To
bridge the gap between this school level mathematics and Olympiad
mathematics, there are numerous books and materials available both
print and online. However, the sad part is that very often this material
is so scattered that the students of this part of the country have a very
hard time collecting them.

To bridge this gap, there are numerous publications by the Assam
Academy of Mathematics which focuses on specific parts mathematics.
However, there has been a long felt need for a good problem book
containing just a few of the Olympiad gems from which both Olympiad
enthusiasts and mathematics lovers can pluck out a problem and relish
in its solution. In order to fulfill that need we have started this series of
books called The Pursuit of Joy . The current volume is the first in
a planned five volume set. This volume concerns mainly with problems
and solutions of a few problems from Number Theory and Inequalities.

The approach that we follow in this book is that of a purely problems
oriented book. We begin each section with a few results without proofs,
and then we list out a few problems. The problems are varied in their
difficulty level, and are mostly taken from various National Olympiads
held all the world. Infact, a few IMO (International Mathematical
Olympiad) problems are also given from time to time. Each problem
section is followed by solutions of several of the problems, and hints
to the others that are not solved. However, the reader is asked not to
look directly into the solution without giving the problem a shot. It
should be kept in mind that the solution we give here may not be the
only solution to that particular problem. The readers are asked to try
to look for other solutions that they may think of.

The Inequalities part of the book reflect the love for Geometric In-
equalities by the second author and contains many gems of Geometric
Inequalities, almost each of them with a solution. We end the book with
a list of more than a hundred unsolved problems involving inequalities.
These problems are again collected from a variety of sources, and are
varied in their difficulty level. Do not get disheartened if you are not
able to solve these, some of them are really difficult. The secret to any
type of problem solving is perseverance and a tenacity to remember
other solved problems. Olympiad mathematics is an enjoyable hobby,
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and hopefully the readers will enjoy the collection of problems that we
present here.

It is impossible on our part to mention all the problem proposers
whose problems we have included in our book, but we are deeply grate-
ful to each and every one of them. Very few of the problems that are
included in the book are original problems proposed by us. The in-
terested readers may like to look into some of the References that we
mention at the end. We have also set up a website for the book where
we will provide some other materials from time to time, The URL of
the website is http://gonitsora.com/joy/ . We would also be grateful
to the readers if they point out any errors in this book. We would also
like to hear about any suggestions for the further improvement of the
later volumes in this series. We can be contacted at joy@gonitsora.com

Pankaj Jyoti Mahanta and Manjil P. Saikia

(Dept. of Mathematical Sciences, Tezpur University, India)
Founders, GonitSora.com

June 2011
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”Mighty are numbers, joined with art resistless.” - Euprides
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1. Heuristics of problem solving

Strategy or tactics in problem solving is called heuristics. Here is a
summary taken from Problem-Solving Through Problems by Loren C.
Larson.

1. Search for a pattern.
2. Draw a figure.
3. Formulate an equivalent problem.
4. Modify the problem.
5. Choose effective notation.
6. Exploit symmetry.
7. Divide into cases.
8. Work backwards.
9. Argue by contradiction.
10. Check for parity.
11. Consider extreme cases.
12. Generalize.
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2. Number Theory

Why are numbers beautiful? It’s like asking why is
Beethoven’s Ninth Symphony beautiful. If you don’t
see why, someone can’t tell you. I know numbers are
beautiful. If they aren’t beautiful, nothing is.

- P. Erdős

2.1. Preliminaries.

Property 2.1. If b = aq for some q ∈ Z, then a divides b, and we write
a | b.

Property 2.2. (Fundamental Properties of the Divisibility Re-
lation)

• a | b, b | c ⇒ a | c.
• d | a, d | b ⇒ d | ax + by.

Property 2.3. (Division Algorithm)Every integer a is uniquely rep-
resentable by the positive integer b in the form a = bq + r, 0 ≤ r < b.

Property 2.4. (Euclidean Algorithm) In the above representation
of integers gcd(a,b)=gcd(b,r).

Theorem 2.1. (Bézout’s Identity) The gcd(a,b) can be represented
by a linear combination of a and b with integral coefficients such that,
there are x, y ∈ Z, so that gcd(a, b) = ax + by.

Theorem 2.2. (Euclid’s Lemma) If p is a prime, p | ab ⇒ p | a or
p | b.

Theorem 2.3. (Fundamental Theorem of Arithmetic) Every
positive integer can be uniquely represented as a product of primes.

Theorem 2.4. (Euclid)There are infinitely many primes.

Property 2.5. n! + 2, n! + 3, n! + 4, · · · , n! + n are (n− 1) consecutive
composite integers.

Property 2.6. The smallest prime factor of a nonprime n is ≤
√

n.

Theorem 2.5. All pairwise prime triples of integers satisfying x2+y2 =
z2 are given by x =| u2 − v2 |, y = 2uv and z = u2 + v2, gcd(u, v) = 1
and u− v is not divisible by 2.

Notation 2.1. (Congruences) If m | a−b then we write a ≡ b (mod m).
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Congruences can be added, subtracted and multiplied in a usual
manner but they cannot be divided always.

Theorem 2.6. (Fermat’s Little Theorem) Let a be a positive inte-
ger and p be a prime, then ap ≡ a (mod p).

The converse is however not valid.

Theorem 2.7. (Wilson’s Theorem)If p is a prime, then (p − 1) ≡
−1 (mod p).

Definition 2.1. (Euler’s totient function) φ(m) denotes the num-
ber of numbers less than m which are prime to m.

Property 2.7. gcd(a, m) = 1 ⇒ aφ(m) ≡ 1 (mod m).

Theorem 2.8. (Euler) If a and m be relatively prime positive integers
then, aφ(m) ≡ 1 (mod p).

Property 2.8. (Sophie Germain Identity) a4 + 4b4 = (a2 + 2b2 +
2ab)(a2 + 2b2 − 2ab).

Definition 2.2. We define ordp(n), by the nonnegative integer k such
that pk || n. Then,

n = Πp:primep
ordp(n)

Theorem 2.9. Let A and B be positive integers, then A is a multiple
of B iff ordp(A) ≥ ordp(B) holds for all primes p.

Notation 2.2. bxc is the greatest integer less than or equal to x. bxc
is read as floor of x.

Theorem 2.10. (De Polignac) ordp(n!) =
∑∞

k=1b
n
pk c.

Property 2.9. • bx + yc ≥ bxc+ byc.
• b bxc

n
c = bx

n
c.

• bx + 1
2
c = the integer nearest to x.

Theorem 2.11. (Hermite) bnxc = bxc+ bx + 1
n
c+ . . . + bx + n−1

n
c.

Notation 2.3. τ(n) denotes the number of divisors of the nonnegative
integer n.

Notation 2.4. σ(n) denotes the sum of the divisors of the nonnegative
integer n.

Theorem 2.12. If n = pa1
1 pa2

2 · · · pak
k is a prime decomposition of n,

then,

τ(n) = (a1 + 1)(a2 + 1) · · · (ak + 1)
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Theorem 2.13. With the notation of the previous theorem we have,
(2a1 +1)(2a2 +1) · · · (2ak +1) distinct pairs of ordered positive integers
(a, b) with lcm(a, b) = n.

Theorem 2.14. For any positive integer n, Πd|nd = n
τ(n)

2 .

Theorem 2.15. With the same notation as the above three theorems
we have,

σ(n) =
pa1+1

1 − 1

p1 − 1
· · · p

ak+1 − 1

pk − 1
.
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2.2. Problems.

Problem 1. • Find all natural numbers n for which 7 divides 2n−
1.

• Prove that there is no natural number n for which 7 divides
2n + 1.

Problem 2. Prove that for each positive integer n, there are pairwise
relatively prime integers k0, k1, . . . , kn, all strictly greater than 1, such
that k0k1 · · · kn − 1 is the product of two consecutive integers.

Problem 3. Determine the values of the positive integer n for which√
9n− 1

n + 7

is rational.

Problem 4. Suppose a, b are integers satisfying 24a2 + 1 = b2. Prove
that exactly one of a, b is divisible by 5.

Problem 5. Let x = abcd be a 4-digit number such that the last 4 digits
of x2 are also abcd. Find all possible values of x.

Problem 6. Let a and b be positive integers and let u = a + b and
v = lcm(a, b). Prove that

gcd(u, v) = gcd(a, b).

Problem 7. Determine the units digit of the numbers a2, b2 and ab (in
base 10), where

a = 22002 + 32002 + 42002 + 52002

and

b = 31 + 32 + 33 + · · ·+ 32002.

Problem 8. Let p be an odd prime. Let k be a positive integer such
that

√
k2 − pk also a positive integer. Find k.

Problem 9. An integer n > 1 has the property, that for every (positive)
divisor d of n, d + 1 is a divisor of n + 1. Prove that n is prime.

Problem 10. Let N be the number of ordered pairs (x, y) of integers
such that

x2 + xy + y2 ≤ 2007.

Prove that N is odd.
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Problem 11. Given a finite set P of prime numbers, there exists a
positive integer x such that it can be written in the form ap + bp (a, b
are positive integers), for each p ∈ P , and cannot be written in that
form for each p not in P .

Problem 12. (Primitive Pythagoras Triangles) Let x, y, z ∈ N with x2 +
y2 = z2, gcd(x, y) = 1, and x ≡ 0 (mod 2) Then, there exists positive
integers p and q such that gcd(p, q) = 1 and

(x, y, z) =
(
2pq, p2 − q2, p2 + q2

)
.

Problem 13. The equation x4 + y4 = z2 has no solution in positive
integers.

Problem 14. Let a and b be positive integers. Show that if 4ab − 1
divides (4a2 − 1)

2
, then a = b.

Problem 15. Let N = {1, 2, 3, · · · } denote the set of positive integers.
Find all functions f : N → N such that for all m, n ∈ N: f(2) = 2,
f(mn) = f(m)f(n), f(n + 1) > f(n).

Problem 16. A natural number p > 1 is a prime if and only if
(

n
p

)
−bn

p
c

is divisible by p for every non-negative n, where
(

n
p

)
is the number of

different ways in which we can choose p out of n elements and bxc is
the greatest integer not exceeding the real number x.

Problem 17. Prove that the sequence an =
(

m
x

)
(mod m) is periodic,

where x, m ∈ N.

Problem 18. Prove that for a natural number m =
∏k

i=1 pbi
i , the se-

quence an =
(

n
m

)
(mod m) has a period of minimal length,

l(m) =
k∏

i=1

p
blogpi

mc+bi

i

Problem 19. Let n be relatively prime to m. Then, show that(
n

m

)
≡
(

n− 1

m

)
(mod m).

Problem 20. Let m be even. Then show that for every integer k we
have, (

m + k

m

)
≡
(

l(m)− 1− k

m

)
(mod m).

Problem 21. Let d(n) denote the number of positive divisors of the
number n. Prove that the sequence d(n2 + 1) does not become strictly
monotonic from some point onwards.
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Problem 22. Prove that d((n2 + 1)2) does not become monotonic from
any given point onwards.

Problem 23. Suppose that a and b are distinct real numbers such that:

(1) a− b, a2 − b2, · · · , ak − bk, · · ·
are all integers. Show that a and b are integers.

Problem 24. Prove that there are no integers x and y satisfying x2 =
y5 − 4.

Problem 25. Suppose the set M = {1, 2, . . . , n} is partitioned into t
disjoint subsets M1, . . . ,Mt. Show that if n ≥ bt! · ec then at least
one class Mz contains three elements xi, xj, xk with the property that
xi − xj = xk.

Problem 26. Let p be a prime number of the form 4k + 1. Show that
p−1∑
i=1

(⌊
2i2

p

⌋
− 2

⌊
i2

p

⌋)
=

p− 1

2
.

Problem 27. Let a and b be positive integers such that ab + 1 divides
a2 + b2. Show that

a2 + b2

ab + 1
is the square of an integer.

Problem 28. Suppose that p is an odd prime. Prove that
p∑

j=0

(
p

j

)(
p + j

j

)
≡ 2p + 1 (mod p2).

Problem 29. Let n be a prime and a1 < a2 < . . . < an be integers.
Prove that a1, a2, . . . , an is an arithmetic progression if and only if there
exists a partition of N0 = {0, 1, 2, . . . , } into n sets A1, A2, . . . , An so
that

a1 + A1 = a2 + A2 = . . . = an + An,

where x + A = {x + a a ∈ A}.

Problem 30. Consider the set of all five-digit numbers whose decimal
representation is a permutation of the digits 1, 2, 3, 4, 5. Prove that this
set can be divided into two groups, in such a way that the sum of the
squares of the numbers in each group is the same.
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2.3. Solutions.

Solution 1. • Since 23 ≡ 8 ≡ 1(mod7), this means 23(mod7) is
periodic with period 3. It suffices to consider following three
cases:
1) If n = 3k, then 2n − 1 ≡ 23k − 1 ≡ (23)k − 1 ≡ 1k − 1 ≡
1− 1 ≡ 0(mod7).
2) If n = 3k + 1, then 2n − 1 ≡ 23k+1 − 1 ≡ 2 × 23k − 1 ≡
2− 1 ≡ 1(mod7).
3) If n = 3k + 2, then 2n− 1 ≡ 4× 23k − 1 ≡ 4− 1 ≡ 3(mod7).
Therefore, we conclude that 2n − 1 is divisible by 7 if and only
if n=3k.

• The proof of this is similar to the above.

Solution 2. This problem can be solved by induction.
For n=1, we may take k0 = 3 and k1 = 7.
Let us assume now that for a certain n there are pairwise relatively
prime integers 1 < k0 < k1 < · · · < kn such that
k0k1 · · · kn − 1 = an(an − 1), for some positive integer an.
Now k0k1 · · · kn = a2

n−an +1. Then choosing kn+1 = a2
n +an +1 yields

k0k1 · · · kn+1 = (a2
n − an + 1)(a2

n + an + 1) = a4
n + a2

n + 1.

Thus
k0k1 · · · kn+1 − 1 = a2

n(a2
n + 1).

So, k0k1 · · · kn+1 − 1 is the product of the two consecutive integers a2
n

and a2
n + 1. Moreover,

gcd(k0k1 · · · kn, kn+1) = gcd(a2
n − an + 1, a2

n + an + 1) = 1,

hence k0, k1, · · · , kn+1 are pairwise relatively prime. This completes the
proof.

Solution 3. We have to find n, for which there exist positive integers
a, b such that gcd(a, b) = 1 and

9n− 1

n + 7
=

a2

b2

From this relation we get

63n− 7

n + 7
=

7a2

b2
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Thus

n =
7a2 + b2

9b2 − a2
= −7 +

64b2

9b2 − a2

Since gcd(a, b) = 1 it follows that gcd(a2, b2) = 1 and gcd(9b2−a2, b2) =
1, so n is an integer if and only if 9b2 − a2 is a divisor of 64. Also,
since n is positive, 9b2 − a2 must be positive.
Now 9b2 − a2 = (3b + a)(3b − a). If a = b = 1 then 9b2 − a2 = 8;
otherwise, 9b2−a2 ≥ 3b+a ≥ 5, so 9b2−a2 ≥ 8. So the possible values
for 9b2 − a2 are 8, 16, 32, 64. The factors 3b + a and 3b - a differ by
a multiple of 2, sum to a multiple of 6, and satisfy 3b + a > 3b − a,
so the possibilities for (3b+a , 3b-a) are (4, 2), (16, 2), and (8, 4).
The corresponding possibilities for (a, b) are (1, 1), (7, 3) and (2,
2), but gcd(2, 2) = 2 6= 1. So, substituting the remaining pairs into

n =
7a2 + b2

9b2 − a2
we get n = 1 or n = 11.

Solution 4. Taking modulo 5, we get
24a2 + 1 ≡ b2(mod5) and 25a2 ≡ 0(mod5).
Therefore, −a2 + 1 ≡ b2(mod5) or a2 + b2 ≡ 1(mod5).
Since for any integer a, a ≡ 0, 1, 2, 3, 4(mod5) and so that a2 ≡ 0, 1, 4(mod5),
we will get the only possibility is that
one of a2, b2 is 0 and the other 1 (mod 5).
Hence proved.

Solution 5. Here we have 10000 | x2 − x = x(x− 1).
Since x and x - 1 are co-prime, and 10000 = 2454, we have either 16 x
and 625 x− 1 or 16 x− 1 and 625 x.
The 4-digit odd multiples of 625 are 1875, 3135, 4375, 5625, 6875,
8125, 9375.
If 1 is added, only 9375 + 1 is divisible by 16. If 1 is subtracted, then
none is divisible by 16. So x = 9376 is the only answer.

Solution 6. Suppose that d a and d b. Then d divides any multiple of
these two numbers and so divides lcm(a, b) = v.
Also, d (a + b). Hence d gcd(u, v).
On the other hand, suppose that d u and d v. Let g = gcd(d, a) and
d = gh. We have that

v = lcm(a, b) = a · b

gcd(a, b)
.

Since d divides v, h divides d and gcd(h, a) = 1, it follows that

h | b

gcd(a, b)
.
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Now g a + b and g a, so g divides b = (a + b) - b. Also h (a + b) and
h b, so h also divides a.
But, as gcd(h, a) = 1, h = 1. Hence d a.
Similarly, d b. Hence the pairs (a, b) and (u, v) have the same divisors
and the result follows.

Solution 7. For any positive integer k we have,

5k ≡ 5(mod10)

24k ≡ 6(mod10)

6k ≡ 6(mod10)

34k ≡ 1(mod10)

Therefore, 22002 ≡ 6 · 4 ≡ 4(mod10), 32002 ≡ 1 · 9 ≡ 9(mod10), 42002 ≡
6(mod10)
Hence a ≡ 4 + 9 + 6 + 5 ≡ 4(mod10) and a2 ≡ 6(mod10).

Now b =
1

2
(32003 − 3), but 32003 − 3 ≡ 7 − 3 ≡ 4(mod10) and so

b ≡ 2(mod10)
Therefore b2 ≡ 4(mod10)
Finally, ab ≡ 4 · 2 ≡ 8(mod10).
Hence the units digits of a2, b2 and ab are respectively 6, 4 and 8.

Solution 8. Let
√

k2 − pk = n, where n ∈ N

Thus k2 − pk − n2 = 0, and k =
p±

√
p2 + 4n2

2
, which implies that

p2 + 4n2 is a perfect square.
Let p2 + 4n2 = m2, where m ∈ N
So, (m− 2n)(m + 2n) = p2.
Since p is a prime and p ≥ 3, we have m− 2n = 1, and m + 2n = p2.

Therefore, m =
p2 + 1

2
and n =

p2 − 1

4
.

So, k =
p±m

2
=

2p± (p2 + 1)

4
.

Thus, k =

(
p + 1

2

)2

(The other value of k gives the same result.)

Solution 9. Let p be the smallest prime factor of n, and let d = n/p.
Then

np + p

n + p
=

p(n + 1)

p(d + 1)
=

n + 1

d + 1

By the given condition,
n + 1

d + 1
is an integer, therefore n+p divides

np+p. Also n+p divides np + p2, so it must divide the difference
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(np + p2)− (np + p) = p2 − p.
Therefore, n + p ≤ p2 − p.
Thus n < p2, so, dividing by p, we have d < p.
Suppose that d has some prime factor q.
Then q ≤ d < p. On the other hand, q also divides n, and then the
minimality of p gives q ≥ p,
which is a contradiction. So q cannot exist, and we conclude that d=1.
Thus n=p, i.e., n is prime.

Solution 10. If (x, y) is a pair of integers that satisfies the inequality,
then (−x,−y) is also such a pair, since

(−x)2 + (−x)(−y) + (−y)2 = x2 + xy + y2.

Again, (0, 0) is also a pair satisfying the inequality.
Thus, Every solution will be paired with a different solution, except for
the one remaining solution (0, 0) which is paired with itself. This shows
that the number of solutions is odd.

Solution 11. Let m denote the product of all primes p which are in P .
Then we consider x = 2m+1.

Now we prove that x satisfy the condition : x = 2m + 2m = (2
m
p )p +

(2
m
p )p, ∀p which are in P .
So, it can be represented in the form , ap + bp ∀p ∈ P . Next we will

prove that the equation ,2m = ap + bp, has no solution for which p is
not in P .

Case-I: p = 2, then a = 2k1a1 and b = 2k2b1 where a, b are congruent
to 1 modulo 2. It is easy to check that k1 = k2 and a1, b1 are congruent
to 1 modulo 2.

Case-II: a = 2k1c, b = 2k2d where c, d are congruent to 1 modulo 2.
Suppose ap +bp = 2m+1 then k1 = k2. Because cp+dp

c+d
divides ap +bp and

cp+dp

c+d
= 1 modulo 2. from the above we can infer that (c, d) = (1, 1)

and it gives that a = b = 2k. So 2pk = 2m or we have that p divides m
and so p∈ P .

Solution 12. The key observation is that the equation can be rewritten
as (x

2

)2

=

(
z + y

2

)(
z − y

2

)
.

Reading the equation x2 + y2 = z2 modulo 2, we see that both y and
z are odd. Hence, z+y

2
, z−y

2
, and x

2
are positive integers. We also find

that z+y
2

and z−y
2

are relatively prime. Indeed, if z+y
2

and z−y
2

admits a

common prime divisor p, then p also divides both y = z+y
2
− z−y

2
and(

x
2

)2
=
(

z+y
2

) (
z−y
2

)
, which means that the prime p divides both x and
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y. This is a contradiction for gcd(x, y) = 1. Now, applying the above
lemma, we obtain(

x

2
,

z + y

2
,

z − y

2

)
=
(
pq, p2, q2

)
for some positive integers p and q such that gcd(p, q) = 1.

Solution 13. Assume to the contrary that there exists a bad triple
(x, y, z) of positive integers such that x4 + y4 = z2. Pick a bad triple
(A, B, C) ∈ D so that A4 + B4 = C2. Letting d denote the greatest
common divisor of A and B, we see that C2 = A4 + B4 is divisible by

d4, so that C is divisible by d2. In the view of
(

A
d

)4
+
(

B
d

)4
=
(

C
d2

)2
, we

find that (a, b, c) =
(

A
d
, B

d
, C

d2

)
is also in D, that is,

a4 + b4 = c2.

Furthermore, since d is the greatest common divisor of A and B, we
have gcd(a, b) = gcd

(
A
d
, B

d

)
= 1. Now, we do the parity argument. If

both a and b are odd, we find that c2 ≡ a4 + b4 ≡ 1 + 1 ≡ 2 (mod 4),
which is impossible. By symmetry, we may assume that a is even and
that b is odd. Combining results, we see that a2 and b2 are relatively
prime and that a2 is even. Now, in the view of (a2)

2
+ (b2)

2
= c2, we

obtain (
a2, b2, c

)
=
(
2pq, p2 − q2, p2 + q2

)
.

for some positive integers p and q such that gcd(p, q) = 1. It is clear
that p and q are of opposite parity. We observe that

q2 + b2 = p2.

Since b is odd, reading it modulo 4 yields that q is even and that p
is odd. If q and b admit a common prime divisor, then p2 = q2 + b2

guarantees that p also has the prime, which contradicts for gcd(p, q) =
1. Combining the results, we see that q and b are relatively prime and
that q is even. In the view of q2 + b2 = p2, we obtain

(q, b, p) =
(
2mn, m2 − n2, m2 + n2

)
.

for some positive integers m and n such that gcd(m,n) = 1. Now,
recall that a2 = 2pq. Since p and q are relatively prime and since q is
even, it guarantees the existence of the pair (P, Q) of positive integers
such that

a = 2PQ, p = P 2, q = 2Q2, gcd(P, Q) = 1.

It follows that 2Q2 = 2q = 2mn so that Q = mn. Since gcd(m,n) = 1,
this guarantees the existence of the pair (M, N) of positive integers such
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that
Q = MN, m = M2, n = N2, gcd(M, N) = 1.

Combining the results, we find that P 2 = p = m2 + n2 = M4 + N4 so
that (M, N, P ) is a bad triple. Recall the starting equation A4 + B4 =
C2. Now, let’s summarize up the results what we did. The bad triple
(A, B, C) produces a new bad triple (M, N, P ). However, we need to
check that it is indeed new. We observe that P < C. Indeed, we deduce

P ≤ P 2 = p < p2 + q2 = c =
C

d2
≤ C.

In words, from a solution of x4 + y4 = z2, we are able to find an-
other solution with smaller positive integer z. The key point is that
this reducing process can be repeated. Hence, it produces to an infinite
sequence of strictly decreasing positive integers. However, it is clearly
impossible. We therefore conclude that there exists no bad triple.

Solution 14. When 4ab− 1 divides (4a2 − 1)
2

for two distinct positive
integers a and b, we say that (a, b) is a bad pair. We want to show that

there is no bad pair. Suppose that 4ab − 1 divides (4a2 − 1)
2
. Then,

4ab− 1 also divides

b
(
4a2 − 1

)2 − a (4ab− 1)
(
4a2 − 1

)
= (a− b)

(
4a2 − 1

)
.

The converse also holds as gcd(b, 4ab − 1) = 1. Similarly, 4ab − 1

divides (a− b) (4a2 − 1)
2

if and only if 4ab−1 divides (a− b)2. So, the
original condition is equivalent to the condition

4ab− 1 | (a− b)2 .

This condition is symmetric in a and b, so (a, b) is a bad pair if and only
if (b, a) is a bad pair. Thus, we may assume without loss of generality
that a > b and that our bad pair of this type has been chosen with the
smallest possible vales of its first element. Write (a−b)2 = m(4ab−1),
where m is a positive integer, and treat this as a quadratic in a:

a2 + (−2b− 4ma)a +
(
b2 + m

)
= 0.

Since this quadratic has an integer root, its discriminant

(2b + 4mb)2 − 4
(
b2 + m

)
= 4

(
4mb2 + 4m2b2 −m

)
must be a perfect square, so 4mb2 + 4m2b2−m is a perfect square. Let
his be the square of 2mb + t and note that 0 < t < b. Let s = b − t.
Rearranging again gives:

4mb2 + 4m2b2 −m = (2mb + t)2

m
(
4b2 − 4bt− 1

)
= t2
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m
(
4b2 − 4b(b− s)− 1

)
= (b− s)2

m(4bs− 1) = (b− s)2.

Therefore, (b, s) is a bad pair with a smaller first element, and we have
a contradiction.

Solution 15. We first evaluate f(n) for small n. It follows from
f (1 · 1) = f(1) · f(1) that f(1) = 1. By the multiplicity, we get
f(4) = f(2)2 = 4. It follows from the inequality 2 = f(2) < f(3) <
f(4) = 4 that f(3) = 3. Also, we compute f(6) = f(2)f(3) = 6. Since
4 = f(4) < f(5) < f(6) = 6, we get f(5) = 5. We prove by induc-
tion that f(n) = n for all n ∈ N. It holds for n = 1, 2, 3. Now, let
n > 2 and suppose that f(k) = k for all k ∈ {1, · · · , n}. We show that
f(n + 1) = n + 1.

Case 1. n + 1 is composite. One may write n + 1 = ab for some
positive integers a and b with 2 ≤ a ≤ b ≤ n. By the inductive hy-
pothesis, we have f(a) = a and f(b) = b. It follows that f(n + 1) =
f(a)f(b) = ab = n + 1.

Case 2. n+1 is prime. In this case, n+2 is even. Write n+2 = 2k for
some positive integer k. Since n ≥ 2, we get 2k = n + 2 ≥ 4 or k ≥ 2.
Since k = n+2

2
≤ n, by the inductive hypothesis, we have f(k) = k. It

follows that f(n + 2) = f(2k) = f(2)f(k) = 2k = n + 2. From the
inequality

n = f(n) < f(n + 1) < f(n + 2) = n + 2

we conclude that f(n + 1) = n + 1. By induction, f(n) = n holds for
all positive integers n.

Solution 16. First assume that p is prime. Now we consider n as
n = ap+b where a is a non-negative integer and b an integer 0 ≤ b < p.
Obviously,

bn
p
c = bap + b

p
c ≡ a (mod p).

Now let us calculate
(

n
p

)
(mod p).(
n

p

)
=

(
ap + b

p

)
=

(ap + b) · (ap + b− 1) · · · (ap + 1) · ap · (ap− 1) · · · (ap + b− p + 1)

p · (p− 1) · · · 2 · 1

=
a · (ap + b) · (ap + b− 1) · · · (ap + 1) · (ap− 1) · · · (ap + b− p + 1)

(p− 1) · (p− 2) · · · 2 · 1
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We denote this number by X.
We have X ≡ c (mod p) for some 0 ≤ c < p. Consequently taking

modulo p, we have

c(p− 1)! = X(p− 1)! = a(ap+ b) · · · (ap+1)(ap− 1) · · · (ap+ b− p+1)

All the numbers ap+b, . . . , ap+b+1−p (other than ap) are relatively
prime to p and obviously none differ more than p so they make a reduced
residue system modulo p, meaning we have mod p,

(p− 1)! = (ap + b) · (ap + b− 1) . . . (ap + 1) · (ap− 1) · (ap + b− p + 1)

both sides of the equation being relatively prime to p so we can deduce
X ≡ c ≡ a (mod p). And finally

(
n
p

)
≡ X ≡ a ≡ bn

p
c (mod p).

To complete the other part of the theorem we must construct a coun-
terexample for every composite number p. If p is composite we can
consider it as qx · k where q is some prime factor of p, x it’s exponent
and k the part of p that is relatively prime to q (x and k cannot be
simultaneously 1 or p is prime). The following n = p+ q = qxk + q will
make a counter example. We have:(

p + q

p

)
=

(
p + q

q

)
=

(qxk + q)(qxk + q − 1) . . . (qxk + 1)

q!

Which after simplifying the fraction equals: (qx−1k+1) (qxk+q−1)...(qxk+1)
(q−1)!

.

Similarly as above we have (qxk + q − 1) . . . (qxk + 1) = (q − 1)! 6= 0
modulo qx therefore,

(qxk + q − 1) . . . (qxk + 1)

(q − 1)!
≡ 1 (mod qx)

and (
p + q

p

)
≡ qx−1k + 1 (mod qx).

On the other hand obviously,

bq
xk + q

qxk
c ≡ 1 (mod qx).

And since qx−1k + 1 can never be equal to 0 modulo qx we see that(
p + q

p

)
6= bp + q

p
c (mod qx)

consequently also incongruent modulo p = qxk.

Solution 17. If x = 1 the sequence is obviously periodic for any modulo
m.

Now we assume that the sequence is periodic for a fixed x and arbi-
trary m. We note that



THE PURSUIT OF JOY-I 17

(
n

x + 1

)
=

n−1∑
i=1

(
i

x

)
.

Let k be the length of a period of sequence an =
(

n
x

)
(mod m), mean-

ing
(

n+k
x

)
≡
(

n
x

)
(mod m).

Therefore
∑k

i=1

(
i
x

)
≡ (mod m) for some c and consequently

∑n+mk
i=n+1

(
i
x

)
=

mc = 0 (mod m) for every integer n. All that is now required is another
calculation (the second equality from the right is modulo m):(

n + mk

x + 1

)
=

n+mk−1∑
i=1

(
i

x

)
=

n−1∑
i=1

(
i

x

)
+

n+mk−1∑
i=n

(
i

x

)
=

n−1∑
i=1

(
i

x

)
=

(
n

x + 1

)
This now shows that sequence bn =

(
n

x+1

)
(mod m) is also periodic for

every modulo m which completes the induction and yields the desired
result.

Solution 18. A sequence an =
(

n
m

)
(mod m) where m =

∏k
i=1 pbi

i starts
with m zeroes (we start with a0). Now let us see when is the next
time we have m consecutive zeroes in the sequence an. We assume this
happens at some natural number n, that is(

n

m

)
≡
(

n + 1

m

)
≡ · · · ≡

(
n + m− 1

m

)
≡ 0 (mod m).

Let p be a prime dividing m and b be it’s exponent in the prime
factorization of m. We have

(
n+i
m

)
≡ 0 (mod pb) for 0 ≤ i < m.

Obviously the exponent of p in prime factorization of m! is

ϑp(m) =
∞∑
i=1

bm
pi
c =

k∑
i=1

bm
pi
c,

where k is the last summand different to zero and k = blogp mc.
Among numbers n+1, n+2 . . . , n+m there exist one that is divisible

by pk (there are m consecutive numbers and m ≥ pk). We denote this
number by x. We have,(

x− 1

m

)
=

(x− 1)(x− 2) . . . (x−m)

m!
.

Since we have −(x−i) ≡ i (mod pj) for all 1 ≤ i < m and 1 ≤ j ≤ k,
so there are same number of numbers divisible by pj in (x − 1)(x −
2) . . . (x−m) as in m! for 1 ≤ j ≤ k.

On the other hand we have
(

x−1
m

)
≡ 0 (mod pb) (since x − 1 is

one of the numbers n, n + 1 . . . n + m− 1). Of m consecutive integers
obviously only one can be divisible by pj if j < k. Therefore if we
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want the numerator of
(

x−1
m

)
to have exponent of p for b larger than the

denominator (that is in order to have
(

x−1
m

)
≡ 0 (mod pb)) we need one

of the numbers of the nominator to be divisible by pblogp mc+a. Denote
this number by y.

We assume y 6= n. Than either y + m (if y < n) or y − 1 (if y > n)
are in the set n, n + 1 . . . n + m− 1. This means that(

y + m

m

)
≡ 0 (mod pb).

(The other case is very similar and uses the same argument.)
However that is imposable since y ≡ 0 (mod pk+1) meaning the expo-

nent of p in prime factorization of (y + m)(y + m− 1) . . . (y + 1) is the
same as in prime factorization of m! or in other words that

(
y+m

m

)
is

relatively prime to p. We reached a contradiction which means y = n.
The same argument will work for any arbitrary prime number divid-

ing m. That means for every prime number p dividing m (infact pb | m)
we need n to be divisible by pblogp mc+b, therefore the length of the period

of the sequence, an must be a multiple of the number
∏k

i=1 p
blogpi

mc+bi

i .
All that remains is to show that this infact is the length of the period.

We need to prove that for every natural number n we have(
n

m

)
≡
(

n + l(m)

m

)
(mod m),

where

l(m) =
k∏

i=1

p
blogpi

mc+bi

i .

Because of some basic properties of congruences (a ≡ b (mod m)
equivalent to ax ≡ bx (mod m) if gcd(m, x) = 1), it is enough to show
that, ∏m−1

i=0 (n− i)∏k
i=1 p

ϑpi (m)

i

≡
∏m−1

i=0 (n + l(m)− i)∏k
i=1 p

ϑpi (m)

i

(mod m).

Among the numbers n, n− 1 . . . n−m + 1 there are atleast b n
pl c that

are divisible by pl for every positive integer l and any prime divisor p
of m.

This is because
m−1∏
i=0

(n− i) =
n!

(n−m)!

and

ϑp(a + b) ≥ ϑp(a) + ϑp(b).
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The fraction
∏m−1

i=0 (n−i)∏k
i=1 p

ϑpi (m)

i

can therefore be simplified in such a way

that no number of the product
∏m−1

i=0 (n− i) is divided by p on exponent
greater than blogp mc.

In other words the fraction
∏m−1

i=0 (n−i)∏k
i=1 p

ϑpi (m)

i

can be simplified as
∏m−1

i=0
n−i∏k
j=1 p

cj
j

where for each j, i we have n−i divisible by p
cj

j and cj ≤ blogpj
mc (each

factor is an integer).

But then since for every j we have
∏k

j=1 p
cj

j divides
∏k

i=1 p
blogpi

mc
i

and since m ·
∏k

i=1 p
blogpi

mc
i = l(m) we have for every i mod m,

n + l(m)− i∏k
j=1 p

cj

j

=
n− i∏k
j=1 p

cj

j

+
l(m)∏k
j=1 p

cj

j

=
n− i∏k
j=1 p

cj

j

+ t ·m =
n− i∏k
j=1 p

cj

j

This completes the result and hence the length of the minimal period
of the sequence, an is

l(m) =
k∏

i=1

p
blogpi

mc+bi

i .

Solution 19. Note that if n is relatively prime to m than so is n−m.
We have (

n

m

)
=

(
n− 1

m

)
· n

n−m
(mod m)

which is equivalent to

(n−m) ·
(

n

m

)
= n ·

(
n− 1

m

)
(mod m)

which is further equivalent to(
n

m

)
=

(
n− 1

m

)
(mod m)

because n = n−m (mod m) and both are relatively prime to m.

Solution 20. We have(
l(m)− 1− k

m

)
=

(l(m)− 1− k)(l(m)− 1− k − 1) . . . (l(m)− 1−m− k + 1)

m!

and because there are an even number (m) of factors we can multiply
each one by −1 and still have the same number. So,(

l(m)− 1− k

m

)
=

(k + 1− l(m))(k + 2− l(m)) . . . (k + m− l(m))

m!
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which is precisely
(

k+m−l(m)
m

)
and is by the previous theorem equal to(

m+k
m

)
(mod m).

Solution 21. Intuitively, the sequence being required to be strictly mono-
tonic points that it will eventually grow rather fast. This is a hint to
the solution. Note that if n is even, then the set of divisors of n2 + 1

can be partitioned into pairs
{

d, n2+1
d

}
, where d <

n2 + 1

d
. Clearly d

is odd and less than n. Hence we have at most
n

2
pairs, consequently

d(n2 + 1) ≤ n.
Assuming to the contrary that the sequence becomes strictly mono-

tonic starting with an N , it’s obvious that it must be increasing (other-
wise d(n2 + 1) would be forced to take negative values from some point
n > N onwards). Note that since n2 +1 is not a perfect square for any
n > 0, hence d(n2 + 1) is an even number for every positive integer n.
Since d(n2 + 1) is strictly monotonic for n ≥ N , we deduce

d((n + 1)2 + 1) ≥ d(n2 + 1) + 2.

A straightforward induction proves that

d((n + k)2 + 1) ≥ d(n2 + 1) + 2k.

By the inequality established in the beginning of the solution, for N+t
even we obtain the inequalities

N + t > d((N + t)2 + 1) ≥ d(N2 + 1) + 2t,

or
N > d(N2 + 1) + t

for any t > 0 which is impossible, since the rest of the terms of the
inequality are constant.

Solution 22. Note that since the sequence is not required to be strictly
monotonic, we cannot infer that it will grow very fast, so the argument
used at (a) fails. We will prove the following generalization:

Claim 1. Let t and m be two positive integers. Then the sequence
d((n2+m2)t) does not become monotonic from any given point onwards.

Suppose, to the contrary, that from some point onwards, the sequence
becomes monotonic.
We will firstly show that it must be increasing. Indeed, take a prime p
of the form 4k+1. Clearly −1 is a quadratic residue (mod p), hence so
is −m2, so there is an integer r so that p | r2+m2. Take now d different
primes s1, . . . , sd of the form 4u + 1 and let ri ∈ Z so that si | r2

i + m2.
Using the Chinese Remainder Theorem there is an integer N , so that
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N ≡ ri (mod si), for every i = 1, . . . , d. Then N2 + m2 ≡ r2
i + m2

(mod si), hence s1 . . . sd | N2 + m2. This implies that d((N2 + m2)t)
is unbounded, consequently it must be increasing from some point x0

onwards.

For shortness of notations let fn = f(n) = d((n2 + m2)t). We will
use the following very simple result.

Lemma 2.1. gcd(a2+m2, (a−1)2+m2) = 1 if gcd(2a−1, 4m2+1) = 1.

Proof. Let gcd(2a − 1, 4m2 + 1) = 1 and suppose there is a prime p
dividing both a2 + m2 and (a − 1)2 + m2. By subtraction, we obtain
p | 2a− 1. Then 2a ≡ 1 (mod p), so 4a2 ≡ 1 (mod p), or 4a2 + 4m2 ≡
1+4m2 (mod p). Since p | 4(a2 +m2) we obtain 0 ≡ 1+4m2 (mod p),
contradicting gcd(2a− 1, 4m2 + 1) = 1. �

Take x > x0 so that gcd(2x− 1, 1 + 4m2) = 1. Then from Lemma 1
and the identity [x2+m2][(x−1)2+m2] = (x2−x+m2)2+m2 we get the
inequality fx−1fx ≤ fx2−x+m2, since d(uv) = d(u) ·d(v) if gcd(u, v) = 1.

We now state the following result, which we are going to use a bit
later.

Lemma 2.2. Let M be an integer. Then there exists a positive integer
λ so that the polynomial h(x) = 4x2 − λ satisfies

gcd(2h(x) + 1, M) = 1,∀x ∈ Z

Proof. Since 2h(x)+1 is odd, we need only prove the lemma for odd M .
So assume M is odd and let {b1, . . . , bs} be the set of prime divisors of
M . We are looking for λ so that bi 6| 2h(x)+1 = 8x2−2λ+1, ∀i = 1, s.
Since bi’s are odd, the last condition is equivalent to bi 6| (4x)2−(4λ−2).
It is enough to find a λ so that 4λ − 2 is a quadratic nonresidue
(mod bi). For every prime bi there exists a quadratic non-residue ri

(actually there are
bi − 1

2
of them). We will apply once again the Chi-

nese Remainder Theorem in the following way:
We are looking for an integer L satisfying the following system of equa-
tions:

L ≡ ri (mod bi),∀i = 1, s

L ≡ 2 (mod 4)

and take λ =
L− 2

4
. Clearly we can assume λ > 0. �
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Let’s continue with the problem. Take M = 1 + 4m2 in Lemma 2
to obtain such λ and h(x). Using the monotonicity of f we deduce the
chain of inequalities

f 2
x−1 ≤ fx−1fx ≤ fx2−x+m2 ≤ f4(x−1)2−λ,

for sufficiently large x > x0. Here, we may also assume that x0 is
sufficiently large so that x > x0 guarantees that h(x) > x0. Note
that the inequality fx−1fx ≤ fx2−x+m2 provides another proof that if f
is monotonic, then it must be increasing. Hence fq

2 ≤ fh(q), where
q = x− 1 ≥ x0, and gcd(2q +1, 1+4m2) = 1. Because by Lemma 2 we
have gcd(2h(q) + 1, 4m2 + 1) = 1 we further get f(q)4 ≤ {f(h(q))}2 ≤
f [h(h(q))]. By an easy induction we obtain the inequalities

f(q)2k ≤ f

h(h(. . . h(q) . . .))︸ ︷︷ ︸
k times

 ≤ f
[
(4q)2k

]
.

Here we have iteratively used the fact that h(z) < 4z2. We are going
now to summarize the obtained results. Let c = f(q) and define g(z)
to be the positive integer satisfying

(4q)2g(z) ≤ z < (4q)2g(z)+1

.

We easily obtain g(z) = blog2blog4q zcc. Then the above inequality and
the monotonicity of f implies

c2g(z) ≤ f(z)

for sufficiently large z. With this, we have found a lower estimate for
f(z).

Let’s find an upper estimate for f(x) which would contradict, for large
enough x the lower estimate obtained above. For this, let (pi)i≥1 be the
sequence of prime numbers, not containing the prime divisors of m.

Let’s take a closer look at f(p1 . . . pk). Let (p1 . . . pk)
2 + m2 =

s∏
i=1

qαi
i .

Using divisibility arguments, we have qi > pj for all i = 1, s and

j = 1, s. This clearly implies
s∑

i=1

αi ≤ 2k. Note that

f (p1 · · · pk) = d
([

(p1 . . . pk)
2 + m2

]t)
= (tα1+1) . . . (tαs+1) =def h(α1, . . . , αs)
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Using the already stated inequality
s∑

i=1

αi ≤ 2k we will prove that

h(α1, . . . , αs) ≤ (t + 1)2k.

Indeed, note that if a > 1 then (t + 1)(t(a − 1) + 1) ≥ ta + 1. Hence
if there is some αi > 1, Without Loss Of Generality, α1 > 1, we have
h(α1, α2, . . . , αs) ≤ h(α1 − 1, α2, . . . , αs, 1). By repeated applications of
this inequality until αi = 1, for all i, we obtain the following inequality

f (p1 · · · pk) = h(α1, . . . , αs) ≤ h

1, 1, . . . , 1︸ ︷︷ ︸∑
αi

 ≤ (t+1)
∑

αi ≤ (t+1)2k = T k,

where T = (t + 1)2. Define now the function l(x) to be equal v +
1, where v is the unique positive integer for which p1 . . . pv < x ≤
p1 . . . pv+1. Using once again the monotonicity of f , we establish the
following upper bound for the function f :

f(x) ≤ f
(
p1 . . . pl(x)

)
≤ T l(x)

Now, since g(x) = blog2blog4q xcc, we have g(x) > log2blog4q xc − 1,
hence

2g(x) > 2log2blog4q xc−1 =
1

2
blog4q xc.

It thus follows that

T l(x) ≥ f(x) ≥ c2g(x)

>
√

c
blog4q xc

.

By the fact that f is unbounded, we can choose c as large as we want,
hence we can assume

√
c > T 2. Then, for reaching a contradiction, we

will show that l(x) < 2blog4q xc for large enough x. Since 1 + log4t x <
−2 + 2 log4t x < 2blog4t xc for log4q x > 3, it is sufficient to prove
l(x)− 1 < log4q x for large enough x. The last inequality is equivalent

to (4q)l(x)−1 < x. Recall that 4q is a constant value. We find that the
primes grow very fast so that the inequality (4q)l(x)−1 < p1 . . . pl(x)−1

holds for large enough x. By the definition of l(x), we have then, indeed,
p1 . . . pl(x)−1 < x, obtaining l(x)− 1 < log4q x, what we wanted.

Solution 23. Let xn = an−bn. We are given that xn ∈ Z for all n ∈ N.

We can easily deduce that a, b are rational:
x2
x1
±x1

2
= a+b±(a−b)

2
= a, b.

Assume, for contradiction’s sake, that a is not an integer. We’ll have
a = p

q
, (p, q) = 1, and | q |> 1. There exist m ∈ N0 such that qm | a−
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b, qm+1 | a− b. We have
(
x1 + p

q

)n

−
(

p
q

)n

= xn, or equivalently:

(2)
(
x′qm+1 + p

)n − pn = qnxn

For a suitable integer x′. Now we’ll use the binomial theorem and di-
vide by qm+1:

(3)
n−1∑
i=0

(
n

i

)
pix′

n−i
q(m+1)(n−i−1) = qn−m−1xn.

Looking (mod q), for n > m + 1, we see that: x′pn−1n ≡ 0 (mod q).
Exploiting the fact that (q, p) = 1 and taking n = (m + 2) | q | +1,
yields q | x′, a contradiction. Hence, q = ±1 and a is an integer.
b = a− x1 is thus also an integer.

We leave the rest of the problems for the reader to solve. Hints are
given below.

Solution 24. In this problem, there are several ways to work with.
Perhaps the easiest method would be to use congruence properties of
integers.

Solution 25. This problem can be tricky, and uses some advanced tech-
niques. However, the readers are advised to give it a try.

Solution 26. De-Polignac’s formula would be useful in this case.

Solution 27. A similar problem was solved earlier, follow that problem.

Solution 28. Use properties of binomial coefficients judiciously along
with congruence properties.

Solution 29. This problem needs some ingenuity, and is solved using
ideas from set theory along with various number theoretic techniques.

Solution 30. This is a fairly straightforward problem, and uses only
elementary number theory.
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3. Inequalities

Each problem that I solved became a rule, which
served afterwards to solve other problems.

- R. Descartes

3.1. Preliminaries.

Theorem 3.1. (Schur) Let x, y, z be nonnegative real numbers. For
any r > 0, we have ∑

cyclic

xr(x− y)(x− z) ≥ 0.

Theorem 3.2. (Muirhead) Let a1, a2, a3, b1, b2, b3 be real numbers such
that

a1 ≥ a2 ≥ a3 ≥ 0, b1 ≥ b2 ≥ b3 ≥ 0, a1 ≥ b1, a1+a2 ≥ b1+b2, a1+a2+a3 = b1+b2+b3.

Let x, y, z be positive real numbers. Then, we have
∑

sym xa1ya2za3 ≥∑
sym xb1yb2zb3.

Theorem 3.3. (The Cauchy-Schwarz inequality) Let a1, · · · , an, b1, · · · , bn

be real numbers. Then,

(a1
2 + · · ·+ an

2)(b1
2 + · · ·+ bn

2) ≥ (a1b1 + · · ·+ anbn)2.

Theorem 3.4. (AM-GM inequality) Let a1, · · · , an be positive real
numbers. Then, we have

a1 + · · ·+ an

n
≥ n
√

a1 · · · an.

Theorem 3.5. (Weighted AM-GM inequality) Let ω1, · · · , ωn > 0
with ω1 + · · ·+ ωn = 1. For all x1, · · · , xn > 0, we have

ω1 x1 + · · ·+ ωn xn ≥ x1
ω1 · · ·xn

ωn .
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Theorem 3.6. (Hölder’s inequality) Let xij (i = 1, · · · , m, j =
1, · · ·n) be positive real numbers. Suppose that ω1, · · · , ωn are positive
real numbers satisfying ω1 + · · ·+ ωn = 1. Then, we have

n∏
j=1

(
m∑

i=1

xij

)ωj

≥
m∑

i=1

(
n∏

j=1

xij
ωj

)
.

Theorem 3.7. (Power Mean inequality) Let x1, · · · , xn > 0. The
power mean of order r is defined by

M(x1,··· ,xn)(0) = n
√

x1 · · ·xn , M(x1,··· ,xn)(r) =

(
xr

1 + · · ·+ xn
r

n

) 1
r

(r 6= 0).

Then, M(x1,··· ,xn) : R −→ R is continuous and monotone increasing.

Theorem 3.8. (Majorization inequality) Let f : [a, b] −→ R be
a convex function. Suppose that (x1, · · · , xn) majorizes (y1, · · · , yn),
where x1, · · · , xn, y1, · · · , yn ∈ [a, b]. Then, we obtain

f(x1) + · · ·+ f(xn) ≥ f(y1) + · · ·+ f(yn).

Theorem 3.9. (Bernoulli’s inequality) For all r ≥ 1 and x ≥ −1,
we have

(1 + x)r ≥ 1 + rx.

Definition 3.1. (Symmetric Means) For given arbitrary real num-
bers x1, · · · , xn, the coefficient of tn−i in the polynomial (t+x1) · · · (t+
xn) is called the i-th elementary symmetric function σi. This means
that

(t + x1) · · · (t + xn) = σ0t
n + σ1t

n−1 + · · ·+ σn−1t + σn.

For i ∈ {0, 1, · · · , n}, the i-th elementary symmetric mean Si is defined
by

Si =
σi(
n
i

) .
Theorem 3.10. Let x1, . . . , xn > 0. For i ∈ {1, · · · , n}, we have

(1) (Newton’s inequality) Si

Si+1
≥ Si−1

Si
,

(2) (Maclaurin’s inequality) Si

1
i ≥ Si+1

1
i+1 .
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Theorem 3.11. (Rearrangement inequality) Let x1 ≥ · · · ≥ xn and
y1 ≥ · · · ≥ yn be real numbers. For any permutation σ of {1, . . . , n},
we have

n∑
i=1

xiyi ≥
n∑

i=1

xiyσ(i) ≥
n∑

i=1

xiyn+1−i.

Theorem 3.12. (Chebyshev’s inequality) Let x1 ≥ · · · ≥ xn and
y1 ≥ · · · ≥ yn be real numbers. We have

x1y1 + · · ·+ xnyn

n
≥
(

x1 + · · ·+ xn

n

)(
y1 + · · ·+ yn

n

)
.

Theorem 3.13. (Hölder’s inequality) Let x1, · · · , xn, y1, · · · , yn be
positive real numbers. Suppose that p > 1 and q > 1 satisfy 1

p
+ 1

q
= 1.

Then, we have

n∑
i=1

xiyi ≤

(
n∑

i=1

xi
p

) 1
p
(

n∑
i=1

yi
q

) 1
q

Theorem 3.14. (Minkowski’s inequality) If x1, · · · , xn, y1, · · · , yn >
0 and p > 1, then(

n∑
i=1

xi
p

) 1
p

+

(
n∑

i=1

yi
p

) 1
p

≥

(
n∑

i=1

(xi + yi)
p

) 1
p
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3.2. Problems.

Problem 31. Let a, b, c be the lengths of the sides of a triangle. Sup-
pose that u = a2 + b2 + c2 and v = (a + b + c)2. Prove that

1

3
≤ u

v
<

1

2
and that the fraction 1/2 on the right cannot be replaced by a smaller
number.

Problem 32. Let a and b be positive real numbers. Prove that the
inequality

(a + b)3

a2b
≥ 27

4
holds. When does equality hold?

Problem 33. Suppose x and y are positive real numbers such that x +
2y = 1. Prove that

1

x
+

2

y
≥ 25

1 + 48xy2
.

Problem 34. Let a1, a2, . . . , an be distinct positive integers. Prove that

a1

12
+

a2

22
+ · · ·+ an

n2
≥ 1

1
+

1

2
+ · · ·+ 1

n
.

Problem 35. Let x,y,z be positive real numbers and xyz ≥ 1. Prove
that

x5 − x2

x5 + y2 + z2
+

y5 − y2

x2 + y5 + z2
+

z5 − z2

x2 + y2 + z5
≥ 0

Problem 36. Prove that, for every positive integer n:

1

11
+

2

21
+

3

31
+ · · · n

10n + 1
<

n

10

Problem 37. Let a, b, u, v be nonnegative numbers. Suppose that
a5 + b5 ≤ 1 and u5 + v5 ≤ 1. Prove that

a2u3 + b2v3 ≤ 1.

Problem 38. Let n be a positive integer and x ¿ 0. Prove that

(1 + x)n+1 ≥ (n + 1)(n + 1)

nn
x.

Problem 39. Prove that

(
√

n− 1 +
√

n +
√

n + 1)2 < 9n.

Problem 40. Suppose that a1 < a2 < · · · < an. Prove that

a1a
4
2 + a2a

4
3 + · · ·+ ana

4
1 ≥ a2a

4
1 + a3a

4
2 + · · ·+ a1a

4
n.
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Problem 41. Let a, b, c be positive real numbers with ab+bc+ca = abc.
Prove that

a4 + b4

ab(a3 + b3)
+

b4 + c4

bc(b3 + c3)
+

c4 + a4

ca(c3 + a3)
≥ 1.

Problem 42. Let a, b, c be the lengths of the sides of a triangle. Prove
that

√
a + b− c +

√
b + c− a +

√
c + a− b ≤

√
a +

√
b +

√
c.

Problem 43. Let a, b, c be the lengths of the sides of a triangle. Prove
the inequality

√
b + c− a√

b +
√

c−
√

a
+

√
c + a− b

√
c +

√
a−

√
b

+

√
a + b− c

√
a +

√
b−

√
c
≤ 3.

Problem 44. Let ABC be a triangle. Prove that

sin 3A + sin 3B + sin 3C ≤ 3
√

3

2
.

Problem 45. (Chebyshev’s Inequality) Let x1, · · · , xn and y1, · · · yn be
two monotone increasing sequences of real numbers:

x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ yn.

Then, we have the estimation
n∑

i=1

xiyi ≥
1

n

(
n∑

i=1

xi

)(
n∑

i=1

yi

)
.

Problem 46. Let a1, · · · , an, b1, · · · , bn be positive real numbers such
that a1 + · · ·+ an = b1 + · · ·+ bn. Show that

a1
2

a1 + b1

+ · · ·+ an
2

an + bn

≥ a1 + · · ·+ an

2
.

Problem 47. Let a, b, c, d ≥ 0 with ab + bc + cd + da = 1. show that

a3

b + c + d
+

b3

c + d + a
+

c3

d + a + b
+

d3

a + b + c
≥ 1

3
.

Problem 48. (Weitzenböck’s Inequality) Let a, b, c be the lengths of a
triangle with area S. Show that

a2 + b2 + c2 ≥ 4
√

3S.

Problem 49. (Hadwiger-Finsler Inequality) For any triangle ABC with
sides a, b, c and area F , the following inequality holds.

2ab + 2bc + 2ca− (a2 + b2 + c2) ≥ 4
√

3F.
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Problem 50. (Tsintsifas) Let p, q, r be positive real numbers and let
a, b, c denote the sides of a triangle with area F . Then, we have

p

q + r
a2 +

q

r + p
b2 +

r

p + q
c2 ≥ 2

√
3F.

Problem 51. (The Neuberg-Pedoe Inequality) Let a1, b1, c1 denote the
sides of the triangle A1B1C1 with area F1. Let a2, b2, c2 denote the
sides of the triangle A2B2C2 with area F2. Then, we have

a1
2(b2

2 +c2
2−a2

2)+ b1
2(c2

2 +a2
2− b2

2)+ c1
2(a2

2 + b2
2− c2

2) ≥ 16F1F2.

Problem 52. Let x1, · · · , xn be arbitrary real numbers. Prove the in-
equality.

x1

1 + x1
2

+
x2

1 + x1
2 + x2

2
+ · · ·+ xn

1 + x1
2 + · · ·+ xn

2
<
√

n.

Problem 53. Let x, y, and z be positive numbers such that xyz ≥ 1.
Prove that

x5 − x2

x5 + y2 + z2
+

y5 − y2

y5 + z2 + x2
+

z5 − z2

z5 + x2 + y2
≥ 0.

Problem 54. Prove that, for all x, y, z > 1 such that 1
x

+ 1
y

+ 1
z

= 2,

√
x + y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1.

Problem 55. Let a, b, c be positive numbers such that abc = 1. Prove
that

1

a + b + 1
+

1

b + c + 1
+

1

c + a + 1
≤ 1.

Problem 56. (Muirhead’s Theorem) Let a1, a2, a3, b1, b2, b3 be real num-
bers such that

a1 ≥ a2 ≥ a3 ≥ 0, b1 ≥ b2 ≥ b3 ≥ 0, a1 ≥ b1, a1+a2 ≥ b1+b2, a1+a2+a3 = b1+b2+b3.

Let x, y, z be positive real numbers. Then, we have∑
sym

xa1ya2za3 ≥
∑
sym

xb1yb2zb3 .

Problem 57. If ma,mb,mc are medians and ra,rb,rc the exradii of a
triangle, prove that

rarb

mamb

+
rbrc

mbmc

+
rcra

mcma

≥ 3.

Problem 58. Prove that, for all a, b, c > 0,
√

a4 + a2b2 + b4+
√

b4 + b2c2 + c4+
√

c4 + c2a2 + a4 ≥ a
√

2a2 + bc+b
√

2b2 + ca+c
√

2c2 + ab.
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Problem 59. (Hölder’s Inequality) Let xij (i = 1, · · · , m, j = 1, · · ·n)
be positive real numbers. Suppose that ω1, · · · , ωn are positive real
numbers satisfying ω1 + · · ·+ ωn = 1. Then, we have

n∏
j=1

(
m∑

i=1

xij

)ωj

≥
m∑

i=1

(
n∏

j=1

xij
ωj

)
.

Problem 60. Let f : [a, b] −→ R be a continuous function. Then, the
followings are equivalent.

(1) For all n ∈ N, the following inequality holds.

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(ω1 x1 + · · ·+ ωn xn)

for all x1, · · · , xn ∈ [a, b] and ω1, · · · , ωn > 0 with ω1 +
· · ·+ ωn = 1.
(2) For all n ∈ N, the following inequality holds.

r1f(x1) + · · ·+ rnf(xn) ≥ f(r1 x1 + · · ·+ rn xn)

for all x1, · · · , xn ∈ [a, b] and r1, · · · , rn ∈ Q+ with r1 +
· · ·+ rn = 1.
(3) For all N ∈ N, the following inequality holds.

f(y1) + · · ·+ f(yN)

N
≥ f

(
y1 + · · ·+ yN

N

)
for all y1, · · · , yN ∈ [a, b].
(4) For all k ∈ {0, 1, 2, · · · }, the following inequality
holds.

f(y1) + · · ·+ f(y2k)

2k
≥ f

(
y1 + · · ·+ y2k

2k

)
for all y1, · · · , y2k ∈ [a, b].
(5) We have 1

2
f(x)+ 1

2
f(y) ≥ f

(
x+y

2

)
for all x, y ∈ [a, b].

(6) We have λf(x) + (1 − λ)f(y) ≥ f (λx + (1− λ)y)
for all x, y ∈ [a, b] and λ ∈ (0, 1).
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3.3. Solutions.

Solution 31. The numerator of the difference
1

2
− u

v
is equal to

v − 2u = 2(ab + bc + ca)− (a2 + b2 + c2)

= a(b + c− a) + b(c + a− b) + c(a + b− c)

By the triangle inequality, a < b + c, b < c + a and c < a + b, so that
the numerator is always positive.
Since all variables are positive, the right inequality follows.

Now the numerator of
u

v
− 1

3
is equal to

3u− v = 2(a2 + b2 + c2 − ab− bc− ca)

= (a− b)2 + (b− c)2 + (c− a)2

The right side, being a sum of squares, is nonnegative and it vanishes
if and only if a = b = c. Thus the left inequality (and the equality)
follows.

For the second part, i.e., to show that
u

v
can be arbitrarily close to

1

2
,

let (a; b; c) = (ε; 1; 1) where 0 < ε < 4. Then

1

2
− u

v
=

ε(4− ε)

(2 + ε)2

This can be made as close to 0 as desired by taking ε sufficiently close
to 0.

Solution 32. Since a and b are positive, the inequality is equivalent to(
a + b

3

)3

≥ a2b

4

To prove this we can apply the arithmetic mean-geometric mean in-
equality to a/2, a/2, b. This gives

a

2
+

a

2
+ b

3
≥ 3

√
a

2

a

2
b =

3

√
a2b

4

Cubing both sides we we get the required result and the equality holds in
the AM-GM inequality when the averaged quantities are all equal, i.e.,
equality holds when b = a/2.
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Solution 33. The given inequality is equivalent to

1

1− 2y
+

2

y
≥ 25

1 + 48(1− 2y)y2
, 0 < y ≤ 1

2
,

which implies

(1 + 48(1− 2y)y2)(2− 3y) ≥ 25y(1− 2y).

Now,
(1 + 48(1− 2y)y2)(2− 3y)− 25y(1− 2y)
= (1 + 48y2 − 96y3)(2− 3y)− 25y + 50y2

= 2− 28y + 146y2 − 336y3 + 288y4

= 2(1− 14y + 73y2 − 168y3 + 144y4)
= 2(1− 7y + 12y2)2

= 2(3y − 1)2(4y − 1)2

≥ 0,∀positiverealywithy ≤ 1

2
,

and the equality holds iffy =
1

3
or

1

4
.

Hence proved.

Solution 34. Let each of b1, b2, . . . , bn is equal to one of a1, a2, . . . , an

such that b1 < b2 < . . . < bn.
Then bi ≥ i for 1 ≤ i ≤ n.

Thus
a1

12
+

a2

22
+ · · ·+ an

n2
≥ b1

12
+

b2

22
+ · · ·+ bn

n2

≥ 1

12
+

1

22
+ · · ·+ 1

n2

≥ 1

1
+

1

2
+ · · ·+ 1

n
.

Solution 35.
x5 − x2

x5 + y2 + z2
− x5 − x2

x3(x2 + y2 + z2)
=

(x3 − 1)2x2(y2 + z2)

x3(x2 + y2 + z2)(x5 + y2 + z2)
≥

0
x5 − x2

x5 + y2 + z2
+

y5 − y2

x2 + y5 + z2
+

z5 − z2

x2 + y2 + z5
≥ x5 − x2

x3(x2 + y2 + z2)
+

y5 − y2

y3(x2 + y2 + z2)
+

z5 − z2

z3(x2 + y2 + z2)

≥ 1

x2 + y2 + z2

(
(x2 − 1

x
) + (y2 − 1

y
) + (z2 − 1

z
)

)
≥ 1

x2 + y2 + z2
[(x2 − yz) + (y2 − zx) + (z2 − xy)]

≥ 0
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Solution 36. The general term on the left hand side is:

k

10k + 1
<

k

10k
=

1

10

Thus adding n terms on the left hand side we will get the inequality.

Solution 37. By the arithmetic-geometric means inequality, we have
that

2a5 + 3u5

5
≥ 5
√

(a5)2(u5)3 = a2u3

and similarly,
2b5 + 3v5

5
≥ b2v3

Adding these two inequalities yields the result.

Solution 38. Here the expression is big but it is a very easy question.
Please solve it.

Solution 39.
√

n + 1−
√

n =
1√

n + 1 +
√

n
<

1
√

n +
√

n− 1
=
√

n−
√

n− 1

Therefore
√

n− 1−
√

n + 1 < 2
√

n.
Thus √

n− 1 +
√

n +
√

n + 1 < 3
√

n.

Squaring both sides we will get the required inequality.

Solution 40. The result is trivial for n = 2. Now for n=3,
when x < y < z,

(xy4+yz4+zx4)−(yx4+zy4+xz4) =
1

2
(z−x)(y−x)(z−y)[(x+y)2+(x+z)2+(y+z)2] ≥ 0

Now let us assume that the result is true for n ≥ 3, then
(a1a

4
2+a2a

4
3+· · ·+ana

4
n+1+an+1a

4
1)−(a2a

4
1+a3a

4
2+· · ·+an+1a

4
n+a1a

4
n+1)

= (a1a
4
2 + a2a

4
3 + · · ·+ ana

4
1)− (a2a

4
1 + a3a

4
2 + · · ·+ a1a

4
n)

+(a1a
4
n + ana

4
n+1 + an+1a

4
1)− (ana

4
1 + an+1a

4
n + a1a

4
n+1) ≥ 0

Thus proved.

Solution 41. We first notice that the constraint can be written as

1

a
+

1

b
+

1

c
= 1.

It is now enough to establish the auxiliary inequality

x4 + y4

xy(x3 + y3)
≥ 1

2

(
1

x
+

1

y

)
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or
2
(
x4 + y4

)
≥
(
x3 + y3

)
(x + y) ,

where x, y > 0. However, we obtain

2
(
x4 + y4

)
−
(
x3 + y3

)
(x + y) = x4+y4−x3y−xy3 =

(
x3 − y3

)
(x− y) ≥ 0.

Solution 42. The left hand side admits the following decomposition
√

c + a− b +
√

a + b− c

2
+

√
a + b− c +

√
b + c− a

2
+

√
b + c− a +

√
c + a− b

2
.

We now use the inequality
√

x+
√

y

2
≤
√

x+y
2

to deduce
√

c + a− b +
√

a + b− c

2
≤
√

a,

√
a + b− c +

√
b + c− a

2
≤
√

b,
√

b + c− a +
√

c + a− b

2
≤
√

c.

Adding these three inequalities, we get the result.

Solution 43. Since the inequality is symmetric in the three variables,
we may assume that a ≥ b ≥ c. We claim that

√
a + b− c

√
a +

√
b−

√
c
≤ 1

and √
b + c− a√

b +
√

c−
√

a
+

√
c + a− b

√
c +

√
a−

√
b
≤ 2.

It is clear that the denominators are positive. So, the first inequality is
equivalent to √

a +
√

b ≥
√

a + b− c +
√

c.

or (√
a +

√
b
)2

≥
(√

a + b− c +
√

c
)2

or √
ab ≥

√
c(a + b− c)

or
ab ≥ c(a + b− c),

which immediately follows from (a− c)(b− c) ≥ 0. Now, we prove the

second inequality. Setting p =
√

a +
√

b and q =
√

a −
√

b, we obtain
a− b = pq and p ≥ 2

√
c. It now becomes
√

c− pq√
c− q

+

√
c + pq√
c + q

≤ 2.
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We now apply The Cauchy-Schwartz Inequality to deduce(√
c− pq√
c− q

+

√
c + pq√
c + q

)2

≤
(

c− pq√
c− q

+
c + pq√
c + q

)(
1√

c− q
+

1√
c + q

)
=

2 (c
√

c− pq2)

c− q2
· 2

√
c

c− q2

= 4
c2 −

√
cpq2

(c− q2)2

≤ 4
c2 − 2cq2

(c− q2)2

≤ 4
c2 − 2cq2 + q4

(c− q2)2

≤ 4.

We find that the equality holds if and only if a = b = c.

Solution 44. We observe that the sine function is not cocave on [0, 3π]
and that it is negative on (π, 2π). Since the inequality is symmetric
in the three variables, we may assume that A ≤ B ≤ C. Observe that
A+B+C = π and that 3A, 3B, 3C ∈ [0, 3π]. It is clear that A ≤ π

3
≤ C.

We see that either 3B ∈ [2π, 3π) or 3C ∈ (0, π) is impossible. In
the case when 3B ∈ [π, 2π), we obtain the estimation

sin 3A + sin 3B + sin 3C ≤ 1 + 0 + 1 = 2 <
3
√

3

2
.

So, we may assume that 3B ∈ (0, π). Similarly, in the case when
3C ∈ [π, 2π], we obtain

sin 3A + sin 3B + sin 3C ≤ 1 + 1 + 0 = 2 <
3
√

3

2
.

Hence, we also assume 3C ∈ (2π, 3π). Now, our assmptions become
A ≤ B < 1

3
π and 2

3
π < C. After the substitution θ = C − 2

3
π, the

trigonometric inequality becomes

sin 3A + sin 3B + sin 3θ ≤ 3
√

3

2
.

Since 3A, 3B, 3θ ∈ (0, π) and since the sine function is concave on
[0, π], Jensen’s Inequality gives

sin 3A+sin 3B+sin 3θ ≤ 3 sin

(
3A + 3B + 3θ

3

)
= 3 sin

(
3A + 3B + 3C − 2π

3

)
= 3 sin

(π

3

)
.
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Under the assumption A ≤ B ≤ C, the equality occurs only when
(A, B, C) =

(
1
9
π, 1

9
π, 7

9
π
)
.

Solution 45. We observe that two sequences are similarly ordered in
the sense that

(xi − xj) (yi − yj) ≥ 0

for all 1 ≤ i, j ≤ n. Now, the given inequality is an immediate conse-
quence of the identity

1

n

n∑
i=1

xiyi −
1

n

(
n∑

i=1

xi

)
1

n

(
n∑

i=1

yi

)
=

1

n2

∑
1≤i,j≤n

(xi − xj) (yi − yj) .

Solution 46. The key observation is the following identity:

n∑
i=1

ai
2

ai + bi

=
1

2

n∑
i=1

ai
2 + bi

2

ai + bi

,

which is equivalent to

n∑
i=1

ai
2

ai + bi

=
n∑

i=1

bi
2

ai + bi

,

which immediately follows from

n∑
i=1

ai
2

ai + bi

−
n∑

i=1

bi
2

ai + bi

=
n∑

i=1

ai
2 − bi

2

ai + bi

=
n∑

i=1

(ai − bi) =
n∑

i=1

ai−
n∑

i=1

bi = 0.

Our strategy is to establish the following symmetric inequality

1

2

n∑
i=1

ai
2 + bi

2

ai + bi

≥ a1 + · · ·+ an + b1 + · · ·+ bn

4
.

It now remains to check the the auxiliary inequality

a2 + b2

a + b
≥ a + b

2
,

where a, b > 0. Indeed, we have 2 (a2 + b2)− (a + b)2 = (a− b)2 ≥ 0.

Solution 47. Since the constraint ab+bc+cd+da = 1 is not symmetric
in the variables, we cannot consider the case when a ≥ b ≥ c ≥ d only.
We first make the observation that

a2+b2+c2+d2 =
a2 + b2

2
+

b2 + c2

2
+

c2 + d2

2
+

d2 + a2

2
≥ ab+bc+cd+da = 1.

Our strategy is to establish the following result. It is symmetric.
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Let a, b, c, d ≥ 0 with a2 + b2 + c2 + d2 ≥ 1. Then, we
obtain

a3

b + c + d
+

b3

c + d + a
+

c3

d + a + b
+

d3

a + b + c
≥ 1

3
.

We now exploit the symmetry! Since everything is symmetric in the
variables, we may assume that a ≥ b ≥ c ≥ d. Two applications of
Chebyshev’s Inequality and one application of The AM-GM Inequality
yield

a3

b + c + d
+

b3

c + d + a
+

c3

d + a + b
+

d3

a + b + c

≥ 1

4

(
a3 + b3 + c3 + d3

)( 1

b + c + d
+

1

c + d + a
+

1

d + a + b
+

1

a + b + c

)
≥ 1

4

(
a3 + b3 + c3 + d3

) 42

(b + c + d) + (c + d + a) + (d + a + b) + (a + b + c)

≥ 1

42

(
a2 + b2 + c2 + d2

)
(a + b + c + d)

42

3(a + b + c + d)

=
1

3
.

Solution 48. Write a = y + z, b = z + x, c = x + y for x, y, z > 0. It’s
equivalent to

((y + z)2 + (z + x)2 + (x + y)2)2 ≥ 48(x + y + z)xyz,

which can be obtained as following :

((y+z)2+(z+x)2+(x+y)2)2 ≥ 16(yz+zx+xy)2 ≥ 16·3(xy·yz+yz·zx+xy·yz).

Here, we used the well-known inequalities p2+q2 ≥ 2pq and (p+q+r)2 ≥
3(pq + qr + rp).

Solution 49. After the substitution a = y + z, b = z + x, c = x + y,
where x, y, z > 0, it becomes

xy + yz + zx ≥
√

3xyz(x + y + z),

which follows from the identity

(xy+yz+zx)2−3xyz(x+y+z) =
(xy − yz)2 + (yz − zx)2 + (zx− xy)2

2
.

Solution 50. By Hadwiger-Finsler Inequality, it suffices to show that

p

q + r
a2 +

q

r + p
b2 +

r

p + q
c2 ≥ 1

2
(a + b + c)2 − (a2 + b2 + c2)
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or(
p + q + r

q + r

)
a2 +

(
p + q + r

r + p

)
b2 +

(
p + q + r

p + q

)
c2 ≥ 1

2
(a + b + c)2

or

((q + r) + (r + p) + (p + q))

(
1

q + r
a2 +

1

r + p
b2 +

1

p + q
c2

)
≥ (a + b + c)2 .

However, this is a straightforward consequence of The Cauchy-Schwarz
Inequality.

Solution 51. We begin with the following lemma.

Lemma 3.1. We have

a1
2(a2

2 + b2
2 − c2

2) + b1
2(b2

2 + c2
2 − a2

2) + c1
2(c2

2 + a2
2 − b2

2) > 0.

Proof. Observe that it’s equivalent to

(a1
2 + b1

2 + c1
2)(a2

2 + b2
2 + c2

2) > 2(a1
2a2

2 + b1
2b2

2 + c1
2c2

2).

From Heron’s Formula, we find that, for i = 1, 2,

16Fi
2 = (ai

2+bi
2+ci

2)2−2(ai
4+bi

4+ci
4) > 0 or ai

2+bi
2+ci

2 >

√
2(ai

4 + bi
4 + ci

4) .

The Cauchy-Schwarz Inequality implies that

(a1
2+b1

2+c1
2)(a2

2+b2
2+c2

2) > 2

√
(a1

4 + b1
4 + c1

4)(a2
4 + b2

4 + c2
4) ≥ 2(a1

2a2
2+b1

2b2
2+c1

2c2
2).

�

By the lemma, we obtain

L = a1
2(b2

2 + c2
2− a2

2)+ b1
2(c2

2 + a2
2− b2

2)+ c1
2(a2

2 + b2
2− c2

2) > 0,

Hence, we need to show that

L2 − (16F1
2)(16F2

2) ≥ 0.

One may easily check the following identity

L2 − (16F1
2)(16F2

2) = −4(UV + V W + WU),

where

U = b1
2c2

2 − b2
2c1

2, V = c1
2a2

2 − c2
2a1

2 and W = a1
2b2

2 − a2
2b1

2.

Using the identity

a1
2U + b1

2V + c1
2W = 0 or W = −a1

2

c1
2
U − b1

2

c1
2
V,

one may also deduce that

UV +V W+WU = −a1
2

c1
2

(
U − c1

2 − a1
2 − b1

2

2a1
2

V

)2

−4a1
2b1

2 − (c1
2 − a1

2 − b1
2)2

4a1
2c1

2
V 2.
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It follows that

UV + V W + WU = −a1
2

c1
2

(
U − c1

2 − a1
2 − b1

2

2a1
2

V

)2

− 16F1
2

4a1
2c1

2
V 2 ≤ 0.

Solution 52. We only consider the case when x1, · · · , xn are all non-
negative real numbers.(Why?)1 Let x0 = 1. After the substitution
yi = x0

2 + · · ·+xi
2 for all i = 0, · · · , n, we obtain xi =

√
yi − yi−1. We

need to prove the following inequality
n∑

i=0

√
yi − yi−1

yi

<
√

n.

Since yi ≥ yi−1 for all i = 1, · · · , n, we have an upper bound of the left
hand side:

n∑
i=0

√
yi − yi−1

yi

≤
n∑

i=0

√
yi − yi−1√
yiyi−1

=
n∑

i=0

√
1

yi−1

− 1

yi

We now apply the Cauchy-Schwarz inequality to give an upper bound
of the last term:

n∑
i=0

√
1

yi−1

− 1

yi

≤

√√√√n
n∑

i=0

(
1

yi−1

− 1

yi

)
=

√
n

(
1

y0

− 1

yn

)
.

Since y0 = 1 and yn > 0, this yields the desired upper bound
√

n.

Solution 53. It’s equivalent to the following inequality(
x2 − x5

x5 + y2 + z2
+ 1

)
+

(
y2 − y5

y5 + z2 + x2
+ 1

)
+

(
z2 − z5

z5 + x2 + y2
+ 1

)
≤ 3

or
x2 + y2 + z2

x5 + y2 + z2
+

x2 + y2 + z2

y5 + z2 + x2
+

x2 + y2 + z2

z5 + x2 + y2
≤ 3.

With The Cauchy-Schwarz Inequality and the fact that xyz ≥ 1, we
have

(x5 + y2 + z2)(yz + y2 + z2) ≥ (x2 + y2 + z2)2

or
x2 + y2 + z2

x5 + y2 + z2
≤ yz + y2 + z2

x2 + y2 + z2
.

Taking the cyclic sum, we reach

x2 + y2 + z2

x5 + y2 + z2
+

x2 + y2 + z2

y5 + z2 + x2
+

x2 + y2 + z2

z5 + x2 + y2
≤ 2 +

xy + yz + zx

x2 + y2 + z2
≤ 3.

1 x1
1+x12 + x2

1+x12+x22 +· · ·+ xn

1+x12+···+xn
2 ≤ |x1|

1+x12 + |x2|
1+x12+x22 +· · ·+ |xn|

1+x12+···+xn
2 .
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Solution 54. After the algebraic substitution a = 1
x
, b = 1

y
, c = 1

z
, we

are required to prove that√
1

a
+

1

b
+

1

c
≥
√

1− a

a
+

√
1− b

b
+

√
1− c

c
,

where a, b, c ∈ (0, 1) and a+b+c = 2. Using the constraint a+b+c = 2,
we obtain a homogeneous inequality√

1

2
(a + b + c)

(
1

a
+

1

b
+

1

c

)
≥

√
a+b+c

2
− a

a
+

√
a+b+c

2
− b

b
+

√
a+b+c

2
− c

c

or√
(a + b + c)

(
1

a
+

1

b
+

1

c

)
≥
√

b + c− a

a
+

√
c + a− b

b
+

√
a + b− c

c
,

which immediately follows from The Cauchy-Schwarz Inequality√
[(b + c− a) + (c + a− b) + (a + b− c)]

(
1

a
+

1

b
+

1

c

)
≥
√

b + c− a

a
+

√
c + a− b

b
+

√
a + b− c

c
.

Solution 55. We can rewrite the given inequality as following :

1

a + b + (abc)1/3
+

1

b + c + (abc)1/3
+

1

c + a + (abc)1/3
≤ 1

(abc)1/3
.

We make the substitution a = x3, b = y3, c = z3 with x, y, z > 0. Then,
it becomes

1

x3 + y3 + xyz
+

1

y3 + z3 + xyz
+

1

z3 + x3 + xyz
≤ 1

xyz

which is equivalent to

xyz
∑
cyclic

(x3+y3+xyz)(y3+z3+xyz) ≤ (x3+y3+xyz)(y3+z3+xyz)(z3+x3+xyz)

or ∑
sym

x6y3 ≥
∑
sym

x5y2z2 !
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We now obtain

∑
sym

x6y3 =
∑
cyclic

x6y3 + y6x3

≥
∑
cyclic

x5y4 + y5x4

=
∑
cyclic

x5(y4 + z4)

≥
∑
cyclic

x5(y2z2 + y2z2)

=
∑
sym

x5y2z2.

Solution 56. We distinguish two cases.

Case 1. b1 ≥ a2: It follows from a1 ≥ a1+a2−b1 and from a1 ≥ b1 that
a1 ≥ max(a1 + a2 − b1, b1) so that max(a1, a2) = a1 ≥ max(a1 + a2 −
b1, b1). From a1 +a2− b1 ≥ b1 +a3− b1 = a3 and a1 +a2− b1 ≥ b2 ≥ b3,
we have max(a1 + a2 − b1, a3) ≥ max(b2, b3). It follows that

∑
sym

xa1ya2za3 =
∑
cyclic

za3(xa1ya2 + xa2ya1)

≥
∑
cyclic

za3(xa1+a2−b1yb1 + xb1ya1+a2−b1)

=
∑
cyclic

xb1(ya1+a2−b1za3 + ya3za1+a2−b1)

≥
∑
cyclic

xb1(yb2zb3 + yb3zb2)

=
∑
sym

xb1yb2zb3 .

Case 2. b1 ≤ a2 : It follows from 3b1 ≥ b1 + b2 + b3 = a1 + a2 + a3 ≥
b1 + a2 + a3 that b1 ≥ a2 + a3 − b1 and that a1 ≥ a2 ≥ b1 ≥ a2 +
a3 − b1. Therefore, we have max(a2, a3) ≥ max(b1, a2 + a3 − b1) and
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max(a1, a2 + a3 − b1) ≥ max(b2, b3). It follows that∑
sym

xa1ya2za3 =
∑
cyclic

xa1(ya2za3 + ya3za2)

≥
∑
cyclic

xa1(yb1za2+a3−b1 + ya2+a3−b1zb1)

=
∑
cyclic

yb1(xa1za2+a3−b1 + xa2+a3−b1za1)

≥
∑
cyclic

yb1(xb2zb3 + xb3zb2)

=
∑
sym

xb1yb2zb3 .

Solution 57. Set 2s = a + b + c. Using the well-known identities

ra =

√
s(s− b)(s− c)

s− a
, ma =

1

2

√
2b2 + 2c2 − a2, etc.

we obtain∑
cyclic

rbrc

mbmc

=
∑
cyclic

4s(s− a)√
(2c2 + 2a2 − b2)(2a2 + 2b2 − c2)

.

Applying the AM-GM inequality, we obtain∑
cyclic

rbrc

mbmc

≥
∑
cyclic

8s(s− a)

(2c2 + 2a2 − b2) + (2a2 + 2b2 − c2)
=
∑
cyclic

2(a + b + c)(b + c− a)

4a2 + b2 + c2
.

Thus, it will be enough to show that∑
cyclic

2(a + b + c)(b + c− a)

4a2 + b2 + c2
≥ 3.

After expanding the above inequality, we see that it becomes

2
∑
cyclic

a6+4
∑
cyclic

a4bc+20
∑
sym

a3b2c+68
∑
cyclic

a3b3+16
∑
cyclic

a5b ≥ 276a2b2c2+27
∑
cyclic

a4b2.

We note that this cannot be proven by just applying Muirhead’s Theo-
rem. Since a, b, c are the sides of a triangle, we can make The Ravi
Substitution a = y + z, b = z + x, c = x + y, where x, y, z > 0. After
some brute-force algebra, we can rewrite the above inequality as

25
∑
sym

x6 + 230
∑
sym

x5y + 115
∑
sym

x4y2 + 10
∑
sym

x3y3 + 80
∑
sym

x4yz

≥ 336
∑
sym

x3y2z + 124
∑
sym

x2y2z2.
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Now, by Muirhead’s Theorem, we get the result !

Solution 58. We obtain the chain of equalities and inequalities∑
cyclic

√
a4 + a2b2 + b4 =

∑
cyclic

√(
a4 +

a2b2

2

)
+

(
b4 +

a2b2

2

)

≥ 1√
2

∑
cyclic

(√
a4 +

a2b2

2
+

√
b4 +

a2b2

2

)
(Cauchy − Schwarz)

=
1√
2

∑
cyclic

(√
a4 +

a2b2

2
+

√
a4 +

a2c2

2

)

≥
√

2
∑
cyclic

4

√(
a4 +

a2b2

2

)(
a4 +

a2c2

2

)
(AM−GM)

≥
√

2
∑
cyclic

√
a4 +

a2bc

2
(Cauchy − Schwarz)

=
∑
cyclic

√
2a4 + a2bc .

Solution 59. Because of the homogeneity of the inequality, we may
rescale x1j, · · · , xmj so that x1j + · · ·+xmj = 1 for each j ∈ {1, · · · , n}.
Then, we need to show that

n∏
j=1

1ωj ≥
m∑

i=1

n∏
j=1

xij
ωj or 1 ≥

m∑
i=1

n∏
j=1

xij
ωj .

The Weighted AM-GM Inequality provides that
n∑

j=1

ωjxij ≥
n∏

j=1

xij
ωj (i ∈ {1, · · · , m}) =⇒

m∑
i=1

n∑
j=1

ωjxij ≥
m∑

i=1

n∏
j=1

xij
ωj .

However, we immediately have
m∑

i=1

n∑
j=1

ωjxij =
n∑

j=1

m∑
i=1

ωjxij =
n∑

j=1

ωj

(
m∑

i=1

xij

)
=

n∑
j=1

ωj = 1.

Solution 60. (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) is obvious.

(2) ⇒ (1) : Let x1, · · · , xn ∈ [a, b] and ω1, · · · , ωn > 0 with ω1 +
· · · + ωn = 1. One may see that there exist positive rational sequences
{rk(1)}k∈N, · · · , {rk(n)}k∈N satisfying

lim
k→∞

rk(j) = wj (1 ≤ j ≤ n) and rk(1)+· · ·+rk(n) = 1 for all k ∈ N.
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By the hypothesis in (2), we obtain rk(1)f(x1) + · · · + rk(n)f(xn) ≥
f(rk(1) x1 + · · · + rk(n) xn). Since f is continuous, taking k → ∞ to
both sides yields the inequality

ω1f(x1) + · · ·+ ωnf(xn) ≥ f(ω1 x1 + · · ·+ ωn xn).

(3) ⇒ (2) : Let x1, · · · , xn ∈ [a, b] and r1, · · · , rn ∈ Q+ with r1 +
· · · + rn = 1. We can find a positive integer N ∈ N so that Nr1, · · · ,
Nrn ∈ N. For each i ∈ {1, · · · , n}, we can write ri = pi

N
, where pi ∈ N.

It follows from r1 + · · · + rn = 1 that N = p1 + · · · + pn. Then, (3)
implies that

r1f(x1) + · · ·+ rnf(xn)

=

p1 terms︷ ︸︸ ︷
f(x1) + · · ·+ f(x1) + · · ·+

pn terms︷ ︸︸ ︷
f(xn) + · · ·+ f(xn)

N

≥ f


p1 terms︷ ︸︸ ︷

x1 + · · ·+ x1 + · · ·+
pn terms︷ ︸︸ ︷

xn + · · ·+ xn

N


= f(r1 x1 + · · ·+ rn xn).

(4) ⇒ (3) : Let y1, · · · , yN ∈ [a, b]. Take a large k ∈ N so that
2k > N . Let a = y1+···+yN

N
. Then, (4) implies that

f(y1) + · · ·+ f(yN) + (2k − n)f(a)

2k

=
f(y1) + · · ·+ f(yN) +

(2k −N) terms︷ ︸︸ ︷
f(a) + · · ·+ f(a)

2k

≥ f

y1 + · · ·+ yN +

(2k −N) terms︷ ︸︸ ︷
a + · · ·+ a

2k


= f(a)

so that

f(y1) + · · ·+ f(yN) ≥ Nf(a) = Nf

(
y1 + · · ·+ yN

N

)
.

(5) ⇒ (4) : We use induction on k. In case k = 0, 1, 2, it clearly holds.
Suppose that (4) holds for some k ≥ 2. Let y1, · · · , y2k+1 ∈ [a, b]. By
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the induction hypothesis, we obtain

f(y1) + · · ·+ f(y2k) + f(y2k+1) + · · ·+ f(y2k+1)

≥ 2kf

(
y1 + · · ·+ y2k

2k

)
+ 2kf

(
y2k+1 + · · ·+ y2k+1

2k

)

= 2k+1
f
(

y1+···+ y
2k

2k

)
+ f

(
y
2k+1

+···+ y
2k+1

2k

)
2

≥ 2k+1f

(
y1+···+ y

2k

2k +
y
2k+1

+···+ y
2k+1

2k

2

)

= 2k+1f

(
y1 + · · ·+ y2k+1

2k+1

)
.

Hence, (4) holds for k + 1. This completes the induction.
So far, we’ve established that (1), (2), (3), (4), (5) are all equivalent.

Since (1) ⇒ (6) ⇒ (5) is obvious, this completes the proof.
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4. Problems for Practice

Try to prove the following inequalities.

4.1. General Problems.

Practice Problem 1. (BMO 2005, Proposed by Serbia and Mon-
tenegro) (a, b, c > 0)

a2

b
+

b2

c
+

c2

a
≥ a + b + c +

4(a− b)2

a + b + c

Practice Problem 2. (Romania 2005, Cezar Lupu) (a, b, c > 0)

b + c

a2
+

c + a

b2
+

a + b

c2
≥ 1

a
+

1

b
+

1

c

Practice Problem 3. (Romania 2005, Traian Tamaian) (a, b, c >
0)

a

b + 2c + d
+

b

c + 2d + a
+

c

d + 2a + b
+

d

a + 2b + c
≥ 1

Practice Problem 4. (Romania 2005, Cezar Lupu)
(
a + b + c ≥ 1

a
+ 1

b
+ 1

c
, a, b, c > 0

)
a + b + c ≥ 3

abc

Practice Problem 5. (Romania 2005, Cezar Lupu) (1 = (a+b)(b+
c)(c + a), a, b, c > 0)

ab + bc + ca ≥ 3

4

Practice Problem 6. (Romania 2005, Robert Szasz) (a + b + c =
3, a, b, c > 0)

a2b2c2 ≥ (3− 2a)(3− 2b)(3− 2c)

Practice Problem 7. (Romania 2005) (abc ≥ 1, a, b, c > 0)

1

1 + a + b
+

1

1 + b + c
+

1

1 + c + a
≤ 1
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Practice Problem 8. (Romania 2005, Unused) (abc = 1, a, b, c >
0)

a

b2(c + 1)
+

b

c2(a + 1)
+

c

a2(b + 1)
≥ 3

2

Practice Problem 9. (Romania 2005, Unused) (a+ b+ c ≥ a
b
+ b

c
+

c
a
, a, b, c > 0)

a3c

b(c + a)
+

b3a

c(a + b)
+

c3b

a(b + c)
≥ 3

2

Practice Problem 10. (Romania 2005, Unused) (a + b + c =
1, a, b, c > 0)

a√
b + c

+
b√

c + a
+

c√
a + b

≥
√

3

2

Practice Problem 11. (Romania 2005, Unused) (ab + bc + ca +
2abc = 1, a, b, c > 0)

√
ab +

√
bc +

√
ca ≥ 3

2

Practice Problem 12. (Chzech and Solvak 2005) (abc = 1, a, b, c >
0)

a

(a + 1)(b + 1)
+

b

(b + 1)(c + 1)
+

c

(c + 1)(a + 1)
≥ 3

4

Practice Problem 13. (Japan 2005) (a + b + c = 1, a, b, c > 0)

a (1 + b− c)
1
3 + b (1 + c− a)

1
3 + c (1 + a− b)

1
3 ≤ 1

Practice Problem 14. (Germany 2005) (a + b + c = 1, a, b, c > 0)

2

(
b

a
+

c

b
+

a

b

)
≥ 1 + a

1− a
+

1 + b

1− b
+

1 + c

1− c

Practice Problem 15. (Vietnam 2005) (a, b, c > 0)(
a

a + b

)3

+

(
b

b + c

)3

+

(
c

c + a

)3

≥ 3

8
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Practice Problem 16. (China 2005) (a + b + c = 1, a, b, c > 0)

10(a3 + b3 + c3)− 9(a5 + b5 + c5) ≥ 1

Practice Problem 17. (China 2005) (abcd = 1, a, b, c, d > 0)

1

(1 + a)2
+

1

(1 + b)2
+

1

(1 + c)2
+

1

(1 + d)2
≥ 1

Practice Problem 18. (China 2005) (ab + bc + ca = 1
3
, a, b, c ≥ 0)

1

a2 − bc + 1
+

1

b2 − ca + 1
+

1

c2 − ab + 1
≤ 3

Practice Problem 19. (Poland 2005) (0 ≤ a, b, c ≤ 1)

a

bc + 1
+

b

ca + 1
+

c

ab + 1
≤ 2

Practice Problem 20. (Poland 2005) (ab + bc + ca = 3, a, b, c > 0)

a3 + b3 + c3 + 6abc ≥ 9

Practice Problem 21. (Baltic Way 2005) (abc = 1, a, b, c > 0)

a

a2 + 2
+

b

b2 + 2
+

c

c2 + 2
≥ 1

Practice Problem 22. (Serbia and Montenegro 2005) (a, b, c > 0)

a√
b + c

+
b√

c + a
+

c√
a + b

≥
√

3

2
(a + b + c)

Practice Problem 23. (Serbia and Montenegro 2005) (a+ b+ c =
3, a, b, c > 0) √

a +
√

b +
√

c ≥ ab + bc + ca

Practice Problem 24. (Bosnia and Hercegovina 2005) (a+b+c =
1, a, b, c > 0)

a
√

b + b
√

c + c
√

a ≤ 1√
3
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Practice Problem 25. (Iran 2005) (a, b, c > 0)(
a

b
+

b

c
+

c

a

)2

≥ (a + b + c)

(
1

a
+

1

b
+

1

c

)

Practice Problem 26. (Austria 2005) (a, b, c, d > 0)

1

a3
+

1

b3
+

1

c3
+

1

d3
≥ a + b + c + d

abcd

Practice Problem 27. (Moldova 2005) (a4 + b4 + c4 = 3, a, b, c > 0)

1

4− ab
+

1

4− bc
+

1

4− ca
≤ 1

Practice Problem 28. (APMO 2005) (abc = 8, a, b, c > 0)

a2√
(1 + a3)(1 + b3)

+
b2√

(1 + b3)(1 + c3)
+

c2√
(1 + c3)(1 + a3)

≥ 4

3

Practice Problem 29. (IMO 2005) (xyz ≥ 1, x, y, z > 0)

x5 − x2

x5 + y2 + z2
+

y5 − y2

y5 + z2 + x2
+

z5 − z2

z5 + x2 + y2
≥ 0

Practice Problem 30. (Poland 2004) (a + b + c = 0, a, b, c ∈ R)

b2c2 + c2a2 + a2b2 + 3 ≥ 6abc

Practice Problem 31. (Baltic Way 2004) (abc = 1, a, b, c > 0, n ∈
N)

1

an + bn + 1
+

1

bn + cn + 1
+

1

cn + an + 1
≤ 1

Practice Problem 32. (Junior Balkan 2004) ((x, y) ∈ R2−{(0, 0)})

2
√

2

x2 + y2
≥ x + y

x2 − xy + y2
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Practice Problem 33. (IMO Short List 2004) (ab + bc + ca =
1, a, b, c > 0)

3

√
1

a
+ 6b +

3

√
1

b
+ 6c +

3

√
1

c
+ 6a ≤ 1

abc

Practice Problem 34. (APMO 2004) (a, b, c > 0)

(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab + bc + ca)

Practice Problem 35. (USA 2004) (a, b, c > 0)

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a + b + c)3

Practice Problem 36. (Junior BMO 2003) (x, y, z > −1)

1 + x2

1 + y + z2
+

1 + y2

1 + z + x2
+

1 + z2

1 + x + y2
≥ 2

Practice Problem 37. (USA 2003) (a, b, c > 0)

(2a + b + c)2

2a2 + (b + c)2
+

(2b + c + a)2

2b2 + (c + a)2
+

(2c + a + b)2

2c2 + (a + b)2
≤ 8

Practice Problem 38. (Russia 2002) (x + y + z = 3, x, y, z > 0)
√

x +
√

y +
√

z ≥ xy + yz + zx

Practice Problem 39. (Latvia 2002)
(

1
1+a4 + 1

1+b4
+ 1

1+c4
+ 1

1+d4 = 1, a, b, c, d > 0
)

abcd ≥ 3

Practice Problem 40. (Albania 2002) (a, b, c > 0)

1 +
√

3

3
√

3
(a2 + b2 + c2)

(
1

a
+

1

b
+

1

c

)
≥ a + b + c +

√
a2 + b2 + c2

Practice Problem 41. (Belarus 2002) (a, b, c, d > 0)√
(a + c)2 + (b + d)2+

2|ad− bc|√
(a + c)2 + (b + d)2

≥
√

a2 + b2+
√

c2 + d2 ≥
√

(a + c)2 + (b + d)2
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Practice Problem 42. (Canada 2002) (a, b, c > 0)

a3

bc
+

b3

ca
+

c3

ab
≥ a + b + c

Practice Problem 43. (Vietnam 2002, Dung Tran Nam) (a2 +
b2 + c2 = 9, a, b, c ∈ R)

2(a + b + c)− abc ≤ 10

Practice Problem 44. (Bosnia and Hercegovina 2002) (a2 + b2 +
c2 = 1, a, b, c ∈ R)

a2

1 + 2bc
+

b2

1 + 2ca
+

c2

1 + 2ab
≤ 3

5

Practice Problem 45. (Junior BMO 2002) (a, b, c > 0)

1

b(a + b)
+

1

c(b + c)
+

1

a(c + a)
≥ 27

2(a + b + c)2

Practice Problem 46. (Greece 2002) (a2 + b2 + c2 = 1, a, b, c > 0)

a

b2 + 1
+

b

c2 + 1
+

c

a2 + 1
≥ 3

4

(
a
√

a + b
√

b + c
√

c
)2

Practice Problem 47. (Greece 2002) (bc 6= 0, 1−c2

bc
≥ 0, a, b, c ∈ R)

10(a2 + b2 + c2 − bc3) ≥ 2ab + 5ac

Practice Problem 48. (Taiwan 2002)
(
a, b, c, d ∈

(
0, 1

2

])
abcd

(1− a)(1− b)(1− c)(1− d)
≤ a4 + b4 + c4 + d4

(1− a)4 + (1− b)4 + (1− c)4 + (1− d)4

Practice Problem 49. (APMO 2002) ( 1
x

+ 1
y

+ 1
z

= 1, x, y, z > 0)
√

x + yz +
√

y + zx +
√

z + xy ≥ √
xyz +

√
x +

√
y +

√
z

Practice Problem 50. (Ireland 2001) (x + y = 2, x, y ≥ 0)

x2y2(x2 + y2) ≤ 2.
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Practice Problem 51. (BMO 2001) (a + b + c ≥ abc, a, b, c ≥ 0)

a2 + b2 + c2 ≥
√

3abc

Practice Problem 52. (USA 2001) (a2+b2+c2+abc = 4, a, b, c ≥ 0)

0 ≤ ab + bc + ca− abc ≤ 2

Practice Problem 53. (Columbia 2001) (x, y ∈ R)

3(x + y + 1)2 + 1 ≥ 3xy

Practice Problem 54. (KMO Winter Program Test 2001) (a, b, c >
0)√

(a2b + b2c + c2a) (ab2 + bc2 + ca2) ≥ abc+ 3
√

(a3 + abc) (b3 + abc) (c3 + abc)

Practice Problem 55. (IMO 2001) (a, b, c > 0)

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1
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4.2. Years 1996 ∼ 2000.

Practice Problem 56. (IMO 2000, Titu Andreescu) (abc = 1, a, b, c >
0) (

a− 1 +
1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1

Practice Problem 57. (Czech and Slovakia 2000) (a, b > 0)

3

√
2(a + b)

(
1

a
+

1

b

)
≥ 3

√
a

b
+ 3

√
b

a

Practice Problem 58. (Hong Kong 2000) (abc = 1, a, b, c > 0)

1 + ab2

c3
+

1 + bc2

a3
+

1 + ca2

b3
≥ 18

a3 + b3 + c3

Practice Problem 59. (Czech Republic 2000) (m, n ∈ N, x ∈
[0, 1])

(1− xn)m + (1− (1− x)m)n ≥ 1

Practice Problem 60. (Macedonia 2000) (x, y, z > 0)

x2 + y2 + z2 ≥
√

2 (xy + yz)

Practice Problem 61. (Russia 1999) (a, b, c > 0)

a2 + 2bc

b2 + c2
+

b2 + 2ca

c2 + a2
+

c2 + 2ab

a2 + b2
> 3

Practice Problem 62. (Belarus 1999) (a2 + b2 + c2 = 3, a, b, c > 0)

1

1 + ab
+

1

1 + bc
+

1

1 + ca
≥ 3

2

Practice Problem 63. (Czech-Slovak Match 1999) (a, b, c > 0)

a

b + 2c
+

b

c + 2a
+

c

a + 2b
≥ 1
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Practice Problem 64. (Moldova 1999) (a, b, c > 0)

ab

c(c + a)
+

bc

a(a + b)
+

ca

b(b + c)
≥ a

c + a
+

b

b + a
+

c

c + b

Practice Problem 65. (United Kingdom 1999) (p+q+r = 1, p, q, r >
0)

7(pq + qr + rp) ≤ 2 + 9pqr

Practice Problem 66. (Canada 1999) (x + y + z = 1, x, y, z ≥ 0)

x2y + y2z + z2x ≤ 4

27

Practice Problem 67. (Proposed for 1999 USAMO, [AB, pp.25])
(x, y, z > 1)

xx2+2yzyy2+2zxzz2+2xy ≥ (xyz)xy+yz+zx

Practice Problem 68. (Turkey, 1999) (c ≥ b ≥ a ≥ 0)

(a + 3b)(b + 4c)(c + 2a) ≥ 60abc

Practice Problem 69. (Macedonia 1999) (a2 + b2 + c2 = 1, a, b, c >
0)

a + b + c +
1

abc
≥ 4

√
3

Practice Problem 70. (Poland 1999) (a + b + c = 1, a, b, c > 0)

a2 + b2 + c2 + 2
√

3abc ≤ 1

Practice Problem 71. (Canda 1999) (x + y + z = 1, x, y, z ≥ 0)

x2y + y2z + z2x ≤ 4

27

Practice Problem 72. (Iran 1998)
(

1
x

+ 1
y

+ 1
z

= 2, x, y, z > 1
)

√
x + y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1
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Practice Problem 73. (Belarus 1998, I. Gorodnin) (a, b, c > 0)

a

b
+

b

c
+

c

a
≥ a + b

b + c
+

b + c

a + b
+ 1

Practice Problem 74. (APMO 1998) (a, b, c > 0)(
1 +

a

b

)(
1 +

b

c

)(
1 +

c

a

)
≥ 2

(
1 +

a + b + c
3
√

abc

)

Practice Problem 75. (Poland 1998)
(
a + b + c + d + e + f = 1, ace + bdf ≥ 1

108
a, b, c, d, e, f > 0

)
abc + bcd + cde + def + efa + fab ≤ 1

36

Practice Problem 76. (Korea 1998) (x + y + z = xyz, x, y, z > 0)

1√
1 + x2

+
1√

1 + y2
+

1√
1 + z2

≤ 3

2

Practice Problem 77. (Hong Kong 1998) (a, b, c ≥ 1)
√

a− 1 +
√

b− 1 +
√

c− 1 ≤
√

c(ab + 1)

Practice Problem 78. (IMO Short List 1998) (xyz = 1, x, y, z > 0)

x3

(1 + y)(1 + z)
+

y3

(1 + z)(1 + x)
+

z3

(1 + x)(1 + y)
≥ 3

4

Practice Problem 79. (Belarus 1997) (a, x, y, z > 0)

a + y

a + x
x +

a + z

a + x
y +

a + x

a + y
z ≥ x + y + z ≥ a + z

a + z
x +

a + x

a + y
y +

a + y

a + z
z

Practice Problem 80. (Ireland 1997) (a + b + c ≥ abc, a, b, c ≥ 0)

a2 + b2 + c2 ≥ abc

Practice Problem 81. (Iran 1997) (x1x2x3x4 = 1, x1, x2, x3, x4 > 0)

x3
1 + x3

2 + x3
3 + x3

4 ≥ max

(
x1 + x2 + x3 + x4,

1

x1

+
1

x2

+
1

x3

+
1

x4

)
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Practice Problem 82. (Hong Kong 1997) (x, y, z > 0)

3 +
√

3

9
≥ xyz(x + y + z +

√
x2 + y2 + z2)

(x2 + y2 + z2)(xy + yz + zx)

Practice Problem 83. (Belarus 1997) (a, b, c > 0)

a

b
+

b

c
+

c

a
≥ a + b

c + a
+

b + c

a + b
+

c + a

b + c

Practice Problem 84. (Bulgaria 1997) (abc = 1, a, b, c > 0)

1

1 + a + b
+

1

1 + b + c
+

1

1 + c + a
≤ 1

2 + a
+

1

2 + b
+

1

2 + c

Practice Problem 85. (Romania 1997) (xyz = 1, x, y, z > 0)

x9 + y9

x6 + x3y3 + y6
+

y9 + z9

y6 + y3z3 + z6
+

z9 + x9

z6 + z3x3 + x6
≥ 2

Practice Problem 86. (Romania 1997) (a, b, c > 0)

a2

a2 + 2bc
+

b2

b2 + 2ca
+

c2

c2 + 2ab
≥ 1 ≥ bc

a2 + 2bc
+

ca

b2 + 2ca
+

ab

c2 + 2ab

Practice Problem 87. (USA 1997) (a, b, c > 0)

1

a3 + b3 + abc
+

1

b3 + c3 + abc
+

1

c3 + a3 + abc
≤ 1

abc
.

Practice Problem 88. (Japan 1997) (a, b, c > 0)

(b + c− a)2

(b + c)2 + a2
+

(c + a− b)2

(c + a)2 + b2
+

(a + b− c)2

(a + b)2 + c2
≥ 3

5

Practice Problem 89. (Estonia 1997) (x, y ∈ R)

x2 + y2 + 1 > x
√

y2 + 1 + y
√

x2 + 1

Practice Problem 90. (APMC 1996) (x + y + z + t = 0, x2 + y2 +
z2 + t2 = 1, x, y, z, t ∈ R)

−1 ≤ xy + yz + zt + tx ≤ 0
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Practice Problem 91. (Spain 1996) (a, b, c > 0)

a2 + b2 + c2 − ab− bc− ca ≥ 3(a− b)(b− c)

Practice Problem 92. (IMO Short List 1996) (abc = 1, a, b, c > 0)

ab

a5 + b5 + ab
+

bc

b5 + c5 + bc
+

ca

c5 + a5 + ca
≤ 1

Practice Problem 93. (Poland 1996)
(
a + b + c = 1, a, b, c ≥ −3

4

)
a

a2 + 1
+

b

b2 + 1
+

c

c2 + 1
≤ 9

10

Practice Problem 94. (Hungary 1996) (a + b = 1, a, b > 0)

a2

a + 1
+

b2

b + 1
≥ 1

3

Practice Problem 95. (Vietnam 1996) (a, b, c ∈ R)

(a + b)4 + (b + c)4 + (c + a)4 ≥ 4

7

(
a4 + b4 + c4

)
Practice Problem 96. (Bearus 1996) (x+y+z =

√
xyz, x, y, z > 0)

xy + yz + zx ≥ 9(x + y + z)

Practice Problem 97. (Iran 1996) (a, b, c > 0)

(ab + bc + ca)

(
1

(a + b)2
+

1

(b + c)2
+

1

(c + a)2

)
≥ 9

4

Practice Problem 98. (Vietnam 1996) (2(ab + ac + ad + bc + bd +
cd) + abc + bcd + cda + dab = 16, a, b, c, d ≥ 0)

a + b + c + d ≥ 2

3
(ab + ac + ad + bc + bd + cd)
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4.3. Years 1990 ∼ 1995.

Practice Problem 99. (Baltic Way 1995) (a, b, c, d > 0)

a + c

a + b
+

b + d

b + c
+

c + a

c + d
+

d + b

d + a
≥ 4

Practice Problem 100. (Canda 1995) (a, b, c > 0)

aabbcc ≥ abc
a+b+c

3

Practice Problem 101. (IMO 1995, Nazar Agakhanov) (abc =
1, a, b, c > 0)

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2

Practice Problem 102. (Russia 1995) (x, y > 0)

1

xy
≥ x

x4 + y2
+

y

y4 + x2

Practice Problem 103. (Macedonia 1995) (a, b, c > 0)√
a

b + c
+

√
b

c + a
+

√
c

a + b
≥ 2

Practice Problem 104. (APMC 1995) (m, n ∈ N, x, y > 0)

(n−1)(m−1)(xn+m+yn+m)+(n+m−1)(xnym+xmyn) ≥ nm(xn+m−1y+xyn+m−1)

Practice Problem 105. (Hong Kong 1994) (xy+yz+zx = 1, x, y, z >
0)

x(1− y2)(1− z2) + y(1− z2)(1− x2) + z(1− x2)(1− y2) ≤ 4
√

3

9

Practice Problem 106. (IMO Short List 1993) (a, b, c, d > 0)

a

b + 2c + 3d
+

b

c + 2d + 3a
+

c

d + 2a + 3b
+

d

a + 2b + 3c
≥ 2

3
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Practice Problem 107. (APMC 1993) (a, b ≥ 0)(√
a +

√
b

2

)2

≤ a +
3
√

a2b +
3
√

ab2 + b

4
≤ a +

√
ab + b

3
≤

√√√√( 3
√

a2 +
3
√

b2

2

)3

Practice Problem 108. (Poland 1993) (x, y, u, v > 0)

xy + xv + uy + uv

x + y + u + v
≥ xy

x + y
+

uv

u + v

Practice Problem 109. (IMO Short List 1993) (a + b + c + d =
1, a, b, c, d > 0)

abc + bcd + cda + dab ≤ 1

27
+

176

27
abcd

Practice Problem 110. (Italy 1993) (0 ≤ a, b, c ≤ 1)

a2 + b2 + c2 ≤ a2b + b2c + c2a + 1

Practice Problem 111. (Poland 1992) (a, b, c ∈ R)

(a+b−c)2(b+c−a)2(c+a−b)2 ≥ (a2+b2−c2)(b2+c2−a2)(c2+a2−b2)

Practice Problem 112. (Vietnam 1991) (x ≥ y ≥ z > 0)

x2y

z
+

y2z

x
+

z2x

y
≥ x2 + y2 + z2

Practice Problem 113. (Poland 1991) (x2 +y2 +z2 = 2, x, y, z ∈ R)

x + y + z ≤ 2 + xyz

Practice Problem 114. (Mongolia 1991) (a2+b2+c2 = 2, a, b, c ∈ R)

|a3 + b3 + c3 − abc| ≤ 2
√

2

Practice Problem 115. (IMO Short List 1990) (ab+ bc+ cd+da =
1, a, b, c, d > 0)

a3

b + c + d
+

b3

c + d + a
+

c3

d + a + b
+

d3

a + b + c
≥ 1

3
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4.4. Supplementary Problems.

Practice Problem 116. (Lithuania 1987) (x, y, z > 0)

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx + x2
≥ x + y + z

3

Practice Problem 117. (Yugoslavia 1987) (a, b > 0)

1

2
(a + b)2 +

1

4
(a + b) ≥ a

√
b + b

√
a

Practice Problem 118. (Yugoslavia 1984) (a, b, c, d > 0)

a

b + c
+

b

c + d
+

c

d + a
+

d

a + b
≥ 2

Practice Problem 119. (IMO 1984) (x + y + z = 1, x, y, z ≥ 0)

0 ≤ xy + yz + zx− 2xyz ≤ 7

27

Practice Problem 120. (USA 1980) (a, b, c ∈ [0, 1])

a

b + c + 1
+

b

c + a + 1
+

c

a + b + 1
+ (1− a)(1− b)(1− c) ≤ 1.

Practice Problem 121. (USA 1979) (x + y + z = 1, x, y, z > 0)

x3 + y3 + z3 + 6xyz ≥ 1

4
.

Practice Problem 122. (IMO 1974) (a, b, c, d > 0)

1 <
a

a + b + d
+

b

b + c + a
+

c

b + c + d
+

d

a + c + d
< 2

Practice Problem 123. (IMO 1968) (x1, x2 > 0, y1, y2, z1, z2 ∈ R, x1y1 >
z1

2, x2y2 > z2
2)

1

x1y1 − z1
2

+
1

x2y2 − z2
2
≥ 8

(x1 + x2)(y1 + y2)− (z1 + z2)2



62 THE PURSUIT OF JOY-I

Practice Problem 124. (Nesbitt’s inequality) (a, b, c > 0)

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2

Practice Problem 125. (Polya’s inequality) (a 6= b, a, b > 0)

1

3

(
2
√

ab +
a + b

2

)
≥ ln b− ln a

b− a

Practice Problem 126. (Klamkin’s inequality) (−1 < x, y, z < 1)

1

(1− x)(1− y)(1− z)
+

1

(1 + x)(1 + y)(1 + z)
≥ 2

Practice Problem 127. (Carlson’s inequality) (a, b, c > 0)

3

√
(a + b)(b + c)(c + a)

8
≥
√

ab + bc + ca

3

Practice Problem 128. ([ONI], Vasile Cirtoaje) (a, b, c > 0)(
a +

1

b
− 1

)(
b +

1

c
− 1

)
+

(
b +

1

c
− 1

)(
c +

1

a
− 1

)
+

(
c +

1

a
− 1

)(
a +

1

b
− 1

)
≥ 3

Practice Problem 129. ([ONI], Vasile Cirtoaje) (a, b, c, d > 0)

a− b

b + c
+

b− c

c + d
+

c− d

d + a
+

d− a

a + b
≥ 0

Practice Problem 130. (Elemente der Mathematik, Problem

1207, S̃efket Arslanagić) (x, y, z > 0)

x

y
+

y

z
+

z

x
≥ x + y + z

3
√

xyz

Practice Problem 131. (
√

WURZEL, Walther Janous) (x+y+z =
1, x, y, z > 0)

(1 + x)(1 + y)(1 + z) ≥ (1− x2)2 + (1− y2)2 + (1− z2)2
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Practice Problem 132. (
√

WURZEL, Heinz-Jürgen Seiffert) (xy >
0, x, y ∈ R)

2xy

x + y
+

√
x2 + y2

2
≥ √

xy +
x + y

2

Practice Problem 133. (
√

WURZEL, Šefket Arslanagić) (a, b, c >
0)

a3

x
+

b3

y
+

c3

z
≥ (a + b + c)3

3 (x + y + z)

Practice Problem 134. (
√

WURZEL, Šefket Arslanagić) (abc =
1, a, b, c > 0)

1

a2 (b + c)
+

1

b2 (c + a)
+

1

c2 (a + b)
≥ 3

2
.

Practice Problem 135. (
√

WURZEL, Peter Starek, Donauwörth)
(abc = 1, a, b, c > 0)

1

a3
+

1

b3
+

1

c3
≥ 1

2
(a + b) (c + a) (b + c)− 1.

Practice Problem 136. (
√

WURZEL, Peter Starek, Donauwörth)
(x + y + z = 3, x2 + y2 + z2 = 7, x, y, z > 0)

1 +
6

xyz
≥ 1

3

(
x

z
+

y

x
+

z

y

)

Practice Problem 137. (
√

WURZEL, Šefket Arslanagić) (a, b, c >
0)

a

b + 1
+

b

c + 1
+

c

a + 1
≥ 3 (a + b + c)

a + b + c + 3
.

Practice Problem 138. ([ONI], Gabriel Dospinescu, Mircea Lascu,
Marian Tetiva) (a, b, c > 0)

a2 + b2 + c2 + 2abc + 3 ≥ (1 + a)(1 + b)(1 + c)
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Practice Problem 139. (Gazeta Matematicã) (a, b, c > 0)
√

a4 + a2b2 + b4+
√

b4 + b2c2 + c4+
√

c4 + c2a2 + a4 ≥ a
√

2a2 + bc+b
√

2b2 + ca+c
√

2c2 + ab

Practice Problem 140. (C22362, Mohammed Aassila) (a, b, c > 0)

a

1 + b
+

b

1 + c
+

c

1 + a
≥ 3

1 + abc

Practice Problem 141. (C2580) (a, b, c > 0)

1

a
+

1

b
+

1

c
≥ b + c

a2 + bc
+

c + a

b2 + ca
+

a + b

c2 + ab

Practice Problem 142. (C2581) (a, b, c > 0)

a2 + bc

b + c
+

b2 + ca

c + a
+

c2 + ab

a + b
≥ a + b + c

Practice Problem 143. (C2532) (a2 + b2 + c2 = 1, a, b, c > 0)

1

a2
+

1

b2
+

1

c2
≥ 3 +

2(a3 + b3 + c3)

abc

Practice Problem 144. (C3032, Vasile Cirtoaje) (a2 + b2 + c2 =
1, a, b, c > 0)

1

1− ab
+

1

1− bc
+

1

1− ca
≤ 9

2

Practice Problem 145. (C2645) (a, b, c > 0)

2(a3 + b3 + c3)

abc
+

9(a + b + c)2

(a2 + b2 + c2)
≥ 33

Practice Problem 146. (x, y ∈ R)

−1

2
≤ (x + y)(1− xy)

(1 + x2)(1 + y2)
≤ 1

2

2CRUX with MAYHEM
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Practice Problem 147. (0 < x, y < 1)

xy + yx > 1

Practice Problem 148. (x, y, z > 0)

3
√

xyz +
|x− y|+ |y − z|+ |z − x|

3
≥ x + y + z

3

Practice Problem 149. (a, b, c, x, y, z > 0)

3
√

(a + x)(b + y)(c + z) ≥ 3
√

abc + 3
√

xyz

Practice Problem 150. (x, y, z > 0)
x

x +
√

(x + y)(x + z)
+

y

y +
√

(y + z)(y + x)
+

z

z +
√

(z + x)(z + y)
≤ 1

Practice Problem 151. (x + y + z = 1, x, y, z > 0)

x√
1− x

+
y√

1− y
+

z√
1− z

≥
√

3

2

Practice Problem 152. (a, b, c ∈ R)√
a2 + (1− b)2 +

√
b2 + (1− c)2 +

√
c2 + (1− a)2 ≥ 3

√
2

2

Practice Problem 153. (a, b, c > 0)
√

a2 − ab + b2 +
√

b2 − bc + c2 ≥
√

a2 + ac + c2

Practice Problem 154. (xy + yz + zx = 1, x, y, z > 0)

x

1 + x2
+

y

1 + y2
+

z

1 + z2
≥ 2x(1− x2)

(1 + x2)2
+

2y(1− y2)

(1 + y2)2
+

2z(1− z2)

(1 + z2)2

Practice Problem 155. (x, y, z ≥ 0)

xyz ≥ (y + z − x)(z + x− y)(x + y − z)
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Practice Problem 156. (a, b, c > 0)√
ab(a + b)+

√
bc(b + c)+

√
ca(c + a) ≥

√
4abc + (a + b)(b + c)(c + a)

Practice Problem 157. (Darij Grinberg) (x, y, z ≥ 0)(√
x (y + z) +

√
y (z + x) +

√
z (x + y)

)
·
√

x + y + z ≥ 2
√

(y + z) (z + x) (x + y).

Practice Problem 158. (Darij Grinberg) (x, y, z > 0)
√

y + z

x
+

√
z + x

y
+

√
x + y

z
≥ 4 (x + y + z)√

(y + z) (z + x) (x + y)
.

Practice Problem 159. (Darij Grinberg) (a, b, c > 0)

a2 (b + c)

(b2 + c2) (2a + b + c)
+

b2 (c + a)

(c2 + a2) (2b + c + a)
+

c2 (a + b)

(a2 + b2) (2c + a + b)
>

2

3
.

Practice Problem 160. (Darij Grinberg) (a, b, c > 0)

a2

2a2 + (b + c)2 +
b2

2b2 + (c + a)2 +
c2

2c2 + (a + b)2 <
2

3
.

Practice Problem 161. (Vasile Cirtoaje) (a, b, c ∈ R)

(a2 + b2 + c2)2 ≥ 3(a3b + b3c + c3a)
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5.2. IMO Code.

from http://www.imo-official.org
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AFG Afghanistan ALB Albania ALG Algeria

ARG Argentina ARM Armenia AUS Australia

AUT Austria AZE Azerbaijan BAH Bahrain

BGD Bangladesh BLR Belarus BEL Belgium

BEN Benin BOL Bolivia BIH BIH
BRA Brazil BRU Brunei BGR Bulgaria

KHM Cambodia CMR Cameroon CAN Canada

CHI Chile CHN CHN COL Colombia

CIS CIS CRI Costa Rica HRV Croatia

CUB Cuba CYP Cyprus CZE Czech Republic

CZS Czechoslovakia DEN Denmark DOM Dominican Republic

ECU Ecuador EST Estonia FIN Finland

FRA France GEO Georgia GDR GDR
GER Germany HEL Greece GTM Guatemala

HND Honduras HKG Hong Kong HUN Hungary

ISL Iceland IND India IDN Indonesia

IRN Islamic Republic of Iran IRL Ireland ISR Israel

ITA Italy JPN Japan KAZ Kazakhstan

PRK PRK KOR Republic of Korea KWT Kuwait

KGZ Kyrgyzstan LVA Latvia LIE Liechtenstein

LTU Lithuania LUX Luxembourg MAC Macau

MKD MKD MAS Malaysia MLT Malta

MRT Mauritania MEX Mexico MDA Republic of Moldova

MNG Mongolia MNE Montenegro MAR Morocco

MOZ Mozambique NLD Netherlands NZL New Zealand

NIC Nicaragua NGA Nigeria NOR Norway

PAK Pakistan PAN Panama PAR Paraguay

PER Peru PHI Philippines POL Poland

POR Portugal PRI Puerto Rico ROU Romania

RUS Russian Federation SLV El Salvador SAU Saudi Arabia

SEN Senegal SRB Serbia SCG Serbia and Montenegro

SGP Singapore SVK Slovakia SVN Slovenia

SAF South Africa ESP Spain LKA Sri Lanka

SWE Sweden SUI Switzerland SYR Syria

TWN Taiwan TJK Tajikistan THA Thailand

TTO Trinidad and Tobago TUN Tunisia TUR Turkey

NCY NCY TKM Turkmenistan UKR Ukraine

UAE United Arab Emirates UNK United Kingdom USA United States of America

URY Uruguay USS USS UZB Uzbekistan

VEN Venezuela VNM Vietnam YUG Yugoslavia
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BIH Bosnia and Herzegovina

CHN People’s Republic of China

CIS Commonwealth of Independent States

FRG Federal Republic of Germany

GDR German Democratic Republic

MKD The Former Yugoslav Republic of Macedonia

NCY Turkish Republic of Northern Cyprus

PRK Democratic People’s Republic of Korea

USS Union of the Soviet Socialist Republics


