Square through Sqaures
A new formula is derived by Piyush Kumar Goyal known as “Square Through Squares”.
Formula is mention below:
N^{2 } = [(N2)^{th }Sq. on YAxis] * [3^{rd} Sq. on XAxis] + [(N3)^{th} Sq. on YAxis] * [(N3)^{th }Sq. on XAxis]

Let’s take some examples:
 Square of 5
5^{2 } = [(52)^{th }Sq. on YAxis] * [3^{rd} Sq. on XAxis] + [(53)^{th} Sq. on YAxis] * [(53)^{th }Sq. on XAxis]
= [3^{rd }Sq. on YAxis] * [3^{rd} Sq. on XAxis] + [2^{nd} Sq. on YAxis] * [2^{nd }Sq. on XAxis]

5^{2 }= (3^{rd} Sq. * 3^{rd} Sq.) + (2^{nd} Sq. * 2^{nd} Sq.)
= 16 points + 9 points
= 25 points
2.Square of 4
4^{2 } = [(42)^{th }Sq. on YAxis] * [3^{rd} Sq. on XAxis] + [(43)^{th} Sq. on YAxis] * [(43)^{th }Sq. on XAxis]
= [2^{nd }Sq. on YAxis] * [3^{rd} Sq. on XAxis] + [1^{st} Sq. on YAxis] * [1^{st }Sq. on XAxis]

4^{2 }= (2^{nd} Sq. * 3^{rd} Sq.) + (1^{st} Sq. * 1^{st} Sq.)
= 12 points + 4 points
= 16 points